国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5的安全繩目標檢測
DOI:
作者:
作者單位:

青島科技大學(xué) 信息科學(xué)與技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

山東省重點(diǎn)研發(fā)計劃(2021SFGC0701);青島市海洋科技創(chuàng )新專(zhuān)項(22-3-3-hygg-3-hy)


Safe rope target detection based on improved YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在工業(yè)施工過(guò)程中, 工人安全已成為一個(gè)日益重要的問(wèn)題, 佩戴安全繩等安全裝備是保護工人在高處工作時(shí)生命安全的重要措施;在現代化生產(chǎn)施工過(guò)程中, 通過(guò)使用監控攝像設備結合人工智能算法的方式來(lái)檢測工人佩戴安全繩等設備越發(fā)普遍, 但安全繩由于細長(cháng)、形狀多變以及環(huán)境變化等因素較為難以準確識別;為解決以上問(wèn)題, 并確保能夠在不同環(huán)境下能夠準確識別安全繩, 現提出一種使用YOLOv5目標檢測算法, 首先通過(guò)改進(jìn)的FasterNet模塊進(jìn)行上下文信息提取, 在Neck網(wǎng)絡(luò )中使用改進(jìn)的多維動(dòng)態(tài)卷積保留更多特征信息, 使用WIoU_Loss損失函數來(lái)提高定位精度, 在訓練過(guò)程中使用動(dòng)態(tài)調整學(xué)習率的策略;實(shí)驗結果表明, 改進(jìn)后的算法在降低計算復雜度的情況下提高了3.0%的檢測精度, mAP@0.5提高了4.3%, 經(jīng)過(guò)在實(shí)際場(chǎng)景應用, 滿(mǎn)足項目對實(shí)時(shí)檢測精度及速度的要求。

    Abstract:

    In the process of industrial construction, worker safety has become an increasingly important issue. Wearing safety equipment such as safety rope is an important measure to protect workers" life safety when working at height. In the process of modern production and construction, it is more and more common to use surveillance camera equipment combined with artificial intelligence algorithm to detect workers wearing safety ropes and other equipment, but safety ropes are difficult to accurately identify due to factors such as slender, changeable shape and environmental changes. In order to solve the above problems and ensure that the safety rope can be accurately identified in different environments, an object detection algorithm using YOLOv5 is proposed. Firstly, context information is extracted by the improved FasterNet module, and more feature information is preserved by the improved multidimensional dynamic convolution in the Neck network. The WIoU_Loss loss function is used to improve the positioning accuracy, and the strategy of dynamically adjusting the learning rate is used in the training process. Experimental results show that the improved algorithm improves the detection accuracy by 3.0% and mAP@0.5 by 4.3% under the condition of reducing the computational complexity. After application in actual scenarios, the proposed algorithm can meet the requirements of the project on real-time detection accuracy and speed.

    參考文獻
    相似文獻
    引證文獻
引用本文

王猛,高樹(shù)靜,張俊虎,李海濤.基于改進(jìn)YOLOv5的安全繩目標檢測計算機測量與控制[J].,2024,32(6):42-50.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-16
  • 最后修改日期:2023-07-20
  • 錄用日期:2023-07-24
  • 在線(xiàn)發(fā)布日期: 2024-06-18
  • 出版日期:
文章二維碼
钟山县| 柳林县| 宁南县| 怀集县| 榆林市| 旺苍县| 临西县| 兴国县| 新沂市| 慈利县| 商洛市| 花莲县| 西吉县| 绩溪县| 平昌县| 台湾省| 清苑县| 大兴区| 星座| 贡觉县| 上林县| 民丰县| 益阳市| 游戏| 九龙城区| 浦北县| 探索| 桦川县| 潞西市| 阿拉善盟| 贵溪市| 拉萨市| 色达县| 鹤峰县| 镇康县| 新沂市| 龙江县| 长顺县| 衡山县| 双柏县| 萨迦县|