packages icon

Tar Archive: /hpux/Misc/lbzip2-2.3/lbzip2-2.3-hppa_32-11.23.depot.gz
Filename:    lbzip2/lbzip2-RUN/usr/local/share/man/man1/lbzip2.1
.ig
Copyright (C) 2011, 2012, 2013 Mikolaj Izdebski
Copyright (C) 2008, 2009, 2010 Laszlo Ersek
Copyright (C) 1996 Julian Seward

This manual page is part of lbzip2, version 2.3. lbzip2 is free software: you
can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

lbzip2 is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
lbzip2. If not, see .
..
.TH LBZIP2 1 "22 September 2013" "lbzip2-2.3" "User commands"

.SH NAME
lbzip2 \- parallel bzip2 utility

.SH SYNOPSIS
.BR lbzip2 "|" bzip2 " [" \-n
.IR WTHRS ]
.RB [ \-k "|" \-c "|" \-t "] [" \-d "] [" \-1 " .. " \-9 "] [" \-f "] [" \-v ]
.RB [ \-S "] ["
.IR "FILE ... " ]

.BR lbunzip2 "|" bunzip2 " [" \-n
.IR WTHRS ]
.RB [ \-k "|" \-c "|" \-t "] [" \-z "] [" \-f "] [" \-v ]
.RB [ \-S "] ["
.IR "FILE ... " ]

.BR lbzcat "|" bzcat " [" \-n
.IR WTHRS ]
.RB [ \-z "] [" \-f "] [" \-v ]
.RB [ \-S "] ["
.IR "FILE ... " ]

.BR lbzip2 "|" bzip2 "|" lbunzip2 "|" bunzip2 "|" lbzcat "|" bzcat " " \-h


.SH DESCRIPTION

Compress or decompress
.I FILE
operands or standard input to regular files or standard output using the
Burrows-Wheeler block-sorting text compression algorithm. The
.B lbzip2
utility employs multiple threads and an input-bound splitter even when
decompressing
.B .bz2
files created by standard bzip2.

Compression is generally considerably better than that achieved by more
conventional LZ77/LZ78-based compressors, and competitive with all but the best
of the PPM family of statistical compressors.

Compression is always performed, even if the compressed file is slightly larger
than the original. The worst case expansion is for files of zero length, which
expand to fourteen bytes. Random data (including the output of most file
compressors) is coded with asymptotic expansion of around 0.5%.

The command-line options are deliberately very similar to those of
.BR bzip2 " and " gzip ,
but they are not identical.


.SH INVOCATION

The default mode of operation is compression. If the utility is invoked as
.BR lbunzip2 " or " bunzip2 ,
the mode is switched to decompression. Calling the utility as
.BR lbzcat " or " bzcat
selects decompression, with the decompressed byte-stream written to standard
output.


.SH OPTIONS

.TP
.BI "\-n " WTHRS
Set the number of (de)compressor threads to
.IR "WTHRS" .
If this option is not specified,
.B lbzip2
tries to query the system for the number of online processors (if both the
compilation environment and the execution environment support that), or exits
with an error (if it's unable to determine the number of processors online).

.TP
.BR \-k ", " \-\-keep
Don't remove
.I FILE
operands after successful (de)compression. Open regular input files with more
than one link.

.TP
.BR \-c ", " \-\-stdout
Write output to standard output, even when
.I FILE
operands are present. Implies
.BR \-k " and excludes " \-t .

.TP
.BR \-t ", " \-\-test
Test decompression; discard output instead of writing it to files or standard
output. Implies
.BR \-k " and excludes " \-c .
Roughly equivalent to passing
.B \-c
and redirecting standard output to the bit bucket.

.TP
.BR \-d ", " \-\-decompress
Force decompression over the mode of operation selected by the invocation name.

.TP
.BR \-z ", " \-\-compress
Force compression over the mode of operation selected by the invocation name.

.TP
.BR \-1 " .. " \-9
Set the compression block size to 100K .. 900K, in 100K increments.
Ignored during decompression. See also the BLOCK SIZE section below.

.TP
.B \-\-fast
Alias for
.BR \-1 .

.TP
.B \-\-best
Alias for
.BR \-9 .
This is the default.

.TP
.BR \-f ", " \-\-force
Open non-regular input files. Open input files with more than one link,
breaking links when
.B \-k
isn't specified in addition. Try to remove each output file before opening it.
By default
.B lbzip2
will not overwrite existing files; if you want this to happen, you should
specify
.BR \-f .
If
.B \-c
and
.B \-d
are also given don't reject files not in bzip2 format, just copy them without
change; without
.B \-f lbzip2
would stop after reaching a file that is not in bzip2 format.

.TP
.BR \-v ", " \-\-verbose
Be more verbose. Print more detailed information about (de)compression progress
to standard error: before processing each file, print a message stating the
names of input and output files; during (de)compression, print a rough
percentage of completeness and estimated time of arrival (only if standard
error is connected to a terminal); after processing each file print a message
showing compression ratio, space savings, total compression time (wall time)
and average (de)compression speed (bytes of plain data processed per second).

.TP
.B \-S
Print condition variable statistics to standard error for each completed
(de)compression operation. Useful in profiling.

.TP
.BR \-s ", " \-\-small ", " \-q ", " \-\-quiet ", " \-\-repetitive\-fast ", " \
    \-\-repetitive\-best ", " \-\-exponential
Accepted for compatibility with
.BR bzip2 ,
otherwise ignored.

.TP
.BR \-h ", " \-\-help
Print help on command-line usage on standard output and exit successfully.

.TP
.BR \-L ", " \-\-license ", " \-V ", " \-\-version
Print license and version information on standard output and exit successfully.


.SH ENVIRONMENT

.TP
.IR LBZIP2 ", " BZIP2 ", " BZIP
Before parsing the command line, lbzip2 inserts the contents of these
variables, in the order specified, between the invocation name and the rest of
the command line. Tokens are separated by spaces and tabs, which cannot be
escaped.


.SH OPERANDS
.TP
.I FILE
Specify files to compress or decompress.

.IR FILE s
with
.BR .bz2 ", " .tbz ", " .tbz2 " and " .tz2
name suffixes will be skipped when compressing. When decompressing,
.B .bz2
suffixes will be removed in output filenames;
.BR .tbz ", " .tbz2 " and " .tz2
suffixes will be replaced by
.BR .tar ;
other filenames will be suffixed with
.BR .out ". If an " INT " or " TERM " signal is delivered to " lbzip2 ,
then it removes the regular output file currently open before exiting.

If no FILE is given, lbzip2 works as a filter, processing standard input to
standard output. In this case,
.B lbzip2
will decline to write compressed output to a terminal (or read compressed input
from a terminal), as this would be entirely incomprehensible and therefore
pointless.


.SH "EXIT STATUS"
.TP
.B 0
if
.B lbzip2
finishes successfully. This presumes that whenever it tries,
.B lbzip2
never fails to write to standard error.

.TP
.B 1
if
.B lbzip2
encounters a fatal error.

.TP
.B 4
if
.B lbzip2
issues warnings without encountering a fatal error. This presumes that whenever
it tries,
.B lbzip2
never fails to write to standard error.

.TP
.BR SIGPIPE ", " SIGXFSZ
.RB "if " lbzip2 " intends to exit with status " 1 " due to any fatal error,"
.RB "but any such signal with inherited " SIG_DFL " action was generated for"
.BR lbzip2 " previously, then " lbzip2 " terminates by way of one of said"
signals, after cleaning up any interrupted output file.

.TP
.B SIGABRT
if a runtime assertion fails (i.e.
.B lbzip2
detects a bug in itself). Hopefully whoever compiled your binary wasn't bold
enough to
.BR "#define NDEBUG" .

.TP
.BR SIGINT ", " SIGTERM
.B lbzip2
catches these signals so that it can remove an interrupted output file. In such
cases,
.B lbzip2
exits by re-raising (one of) the received signal(s).


.SH "BLOCK SIZE"

.B lbzip2
compresses large files in blocks. It can operate at various block sizes,
ranging from 100k to 900k in 100k steps, and it allocates only as much memory
as it needs to. The block size affects both the compression ratio achieved,
and the amount of memory needed both for compression and decompression.
Compression and decompression speed is virtually unaffected by block size,
provided that the file being processed is large enough to be split among all
worker threads.

The flags
.BR \-1 " through " \-9
specify the block size to be 100,000 bytes through 900,000 bytes (the default)
respectively. At decompression-time, the block size used for compression is
read from the compressed file -- the flags
.BR \-1 " to " \-9
are irrelevant to and so ignored during decompression.

Larger block sizes give rapidly diminishing marginal returns; most of the
compression comes from the first two or three hundred k of block size, a fact
worth bearing in mind when using
.B lbzip2
on small machines. It is also important to appreciate that the decompression
memory requirement is set at compression-time by the choice of block size. In
general you should try and use the largest block size memory constraints allow.

Another significant point applies to small files. By design, only one of
.BR lbzip2 's
worker threads can work on a single block. This means that if the number of
blocks in the compressed file is less than the number of processors online,
then some of worker threads will remain idle for the entire time. Compressing
small files with smaller block sizes can therefore significantly increase both
compression and decompression speed. The speed difference is more noticeable
as the number of CPU cores grows.


.SH "ERROR HANDLING"

Dealing with error conditions is the least satisfactory aspect of
.BR lbzip2 .
The policy is to try and leave the filesystem in a consistent state, then quit,
even if it means not processing some of the files mentioned in the command
line.

`A consistent state' means that a file exists either in its compressed or
uncompressed form, but not both. This boils down to the rule `delete the output
file if an error condition occurs, leaving the input intact'. Input files are
only deleted when we can be pretty sure the output file has been written and
closed successfully.



.SH "RESOURCE ALLOCATION"

.B lbzip2
needs various kinds of system resources to operate. Those include memory,
threads, mutexes and condition variables. The policy is to simply give up if a
resource allocation failure occurs.

Resource consumption grows linearly with number of worker threads. If
.B lbzip2
fails because of lack of some resources, decreasing number of worker threads
may help. It would be possible for
.B lbzip2
to try to reduce number of worker threads (and hence the resource consumption),
or to move on to subsequent files in the hope that some might need less
resources, but the complications for doing this seem more trouble than they are
worth.


.SH "DAMAGED FILES"

.B lbzip2
attempts to compress data by performing several non-trivial transformations on
it. Every compression of a file implies an assumption that the compressed file
can be decompressed to reproduce the original. Great efforts in design, coding
and testing have been made to ensure that this program works correctly.
However, the complexity of the algorithms, and, in particular, the presence of
various special cases in the code which occur with very low but non-zero
probability make it very difficult to rule out the possibility of bugs
remaining in the program. That is not to say this program is inherently
unreliable. Indeed, I very much hope the opposite is true --
.B lbzip2
has been carefully constructed and extensively tested.

As a self-check for your protection,
.B lbzip2
uses 32-bit CRCs to make sure that the decompressed version of a file is
identical to the original. This guards against corruption of the compressed
data, and against undiscovered bugs in
.B lbzip2
(hopefully unlikely). The chances of data corruption going undetected is
microscopic, about one chance in four billion for each file processed. Be
aware, though, that the check occurs upon decompression, so it can only tell
you that that something is wrong.

CRCs can only detect corrupted files, they can't help you recover the original,
uncompressed data. However, because of the block nature of the compression
algorithm, it may be possible to recover some parts of the damaged file, even
if some blocks are destroyed.


.SH BUGS
Separate input files don't share worker threads; at most one input file is
worked on at any moment.


.SH AUTHORS
.B lbzip2
was originally written by Laszlo Ersek ,
http://lacos.hu/. Versions 2.0 and later were written by Mikolaj Izdebski.


.SH COPYRIGHT

Copyright (C) 2011, 2012, 2013 Mikolaj Izdebski
.br
Copyright (C) 2008, 2009, 2010 Laszlo Ersek
.br
Copyright (C) 1996 Julian Seward

This manual page is part of lbzip2, version 2.3. lbzip2 is free software: you
can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

lbzip2 is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
lbzip2. If not, see .


.SH THANKS
Adam Maulis at ELTE IIG; Julian Seward; Paul Sladen; Michael Thomas from
Caltech HEP; Bryan Stillwell; Zsolt Bartos-Elekes; Imre Csatlos; Gabor
Kovesdan; Paul Wise; Paolo Bonzini; Department of Electrical and Information
Engineering at the University of Oulu; Yuta Mori.


.SH "SEE ALSO"
.TP
.BR lbzip2 " home page"
http://lbzip2.org/

.TP
.BR bzip2 (1)
http://www.bzip.org/

.TP
.BR pbzip2 (1)
http://compression.ca/pbzip2/

.TP
.BR bzip2smp (1)
http://bzip2smp.sourceforge.net/

.TP
.BR smpbzip2 (1)
http://home.student.utwente.nl/n.werensteijn/smpbzip2/

.TP
.BR dbzip2 (1)
http://www.mediawiki.org/wiki/Dbzip2

.TP
.BR p7zip (1)
http://p7zip.sourceforge.net/