1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993-1998 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software Foundation,
20 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
34 #if defined(STDC_HEADERS) && !defined(emacs)
37 /* We need this for `regex.h', and perhaps for the Emacs include files. */
38 #include <sys/types.h>
41 /* For platform which support the ISO C amendement 1 functionality we
42 support user defined character classes. */
43 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
48 /* This is for other GNU distributions with internationalized messages. */
49 #if HAVE_LIBINTL_H || defined (_LIBC)
52 # define gettext(msgid) (msgid)
56 /* This define is so xgettext can find the internationalizable
58 #define gettext_noop(String) String
61 /* The `emacs' switch turns on certain matching commands
62 that make sense only in Emacs. */
71 /* If we are not linking with Emacs proper,
72 we can't use the relocating allocator
73 even if config.h says that we can. */
76 #if defined (STDC_HEADERS) || defined (_LIBC)
83 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
84 If nothing else has been done, use the method below. */
85 #ifdef INHIBIT_STRING_HEADER
86 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
87 #if !defined (bzero) && !defined (bcopy)
88 #undef INHIBIT_STRING_HEADER
93 /* This is the normal way of making sure we have a bcopy and a bzero.
94 This is used in most programs--a few other programs avoid this
95 by defining INHIBIT_STRING_HEADER. */
96 #ifndef INHIBIT_STRING_HEADER
97 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
100 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
103 #define bcopy(s, d, n) memcpy ((d), (s), (n))
106 #define bzero(s, n) memset ((s), 0, (n))
113 /* Define the syntax stuff for \<, \>, etc. */
115 /* This must be nonzero for the wordchar and notwordchar pattern
116 commands in re_match_2. */
121 #ifdef SWITCH_ENUM_BUG
122 #define SWITCH_ENUM_CAST(x) ((int)(x))
124 #define SWITCH_ENUM_CAST(x) (x)
129 extern char *re_syntax_table;
131 #else /* not SYNTAX_TABLE */
133 /* How many characters in the character set. */
134 #define CHAR_SET_SIZE 256
136 static char re_syntax_table[CHAR_SET_SIZE];
147 bzero (re_syntax_table, sizeof re_syntax_table);
149 for (c = 'a'; c <= 'z'; c++)
150 re_syntax_table[c] = Sword;
152 for (c = 'A'; c <= 'Z'; c++)
153 re_syntax_table[c] = Sword;
155 for (c = '0'; c <= '9'; c++)
156 re_syntax_table[c] = Sword;
158 re_syntax_table['_'] = Sword;
163 #endif /* not SYNTAX_TABLE */
165 #define SYNTAX(c) re_syntax_table[c]
167 #endif /* not emacs */
169 /* Get the interface, including the syntax bits. */
172 /* isalpha etc. are used for the character classes. */
175 /* Jim Meyering writes:
177 "... Some ctype macros are valid only for character codes that
178 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
179 using /bin/cc or gcc but without giving an ansi option). So, all
180 ctype uses should be through macros like ISPRINT... If
181 STDC_HEADERS is defined, then autoconf has verified that the ctype
182 macros don't need to be guarded with references to isascii. ...
183 Defining isascii to 1 should let any compiler worth its salt
184 eliminate the && through constant folding." */
186 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
189 #define ISASCII(c) isascii(c)
193 #define ISBLANK(c) (ISASCII (c) && isblank (c))
195 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
198 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
200 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
203 #define ISPRINT(c) (ISASCII (c) && isprint (c))
204 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
205 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
206 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
207 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
208 #define ISLOWER(c) (ISASCII (c) && islower (c))
209 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
210 #define ISSPACE(c) (ISASCII (c) && isspace (c))
211 #define ISUPPER(c) (ISASCII (c) && isupper (c))
212 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
215 #define NULL (void *)0
218 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
219 since ours (we hope) works properly with all combinations of
220 machines, compilers, `char' and `unsigned char' argument types.
221 (Per Bothner suggested the basic approach.) */
222 #undef SIGN_EXTEND_CHAR
224 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
225 #else /* not __STDC__ */
226 /* As in Harbison and Steele. */
227 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
230 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
231 use `alloca' instead of `malloc'. This is because using malloc in
232 re_search* or re_match* could cause memory leaks when C-g is used in
233 Emacs; also, malloc is slower and causes storage fragmentation. On
234 the other hand, malloc is more portable, and easier to debug.
236 Because we sometimes use alloca, some routines have to be macros,
237 not functions -- `alloca'-allocated space disappears at the end of the
238 function it is called in. */
242 #define REGEX_ALLOCATE malloc
243 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
244 #define REGEX_FREE free
246 #else /* not REGEX_MALLOC */
248 /* Emacs already defines alloca, sometimes. */
251 /* Make alloca work the best possible way. */
253 #define alloca __builtin_alloca
254 #else /* not __GNUC__ */
257 #else /* not __GNUC__ or HAVE_ALLOCA_H */
258 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
259 #ifndef _AIX /* Already did AIX, up at the top. */
261 #endif /* not _AIX */
263 #endif /* not HAVE_ALLOCA_H */
264 #endif /* not __GNUC__ */
266 #endif /* not alloca */
268 #define REGEX_ALLOCATE alloca
270 /* Assumes a `char *destination' variable. */
271 #define REGEX_REALLOCATE(source, osize, nsize) \
272 (destination = (char *) alloca (nsize), \
273 bcopy (source, destination, osize), \
276 /* No need to do anything to free, after alloca. */
277 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
279 #endif /* not REGEX_MALLOC */
281 /* Define how to allocate the failure stack. */
283 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
285 #define REGEX_ALLOCATE_STACK(size) \
286 r_alloc (&failure_stack_ptr, (size))
287 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
288 r_re_alloc (&failure_stack_ptr, (nsize))
289 #define REGEX_FREE_STACK(ptr) \
290 r_alloc_free (&failure_stack_ptr)
292 #else /* not using relocating allocator */
296 #define REGEX_ALLOCATE_STACK malloc
297 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
298 #define REGEX_FREE_STACK free
300 #else /* not REGEX_MALLOC */
302 #define REGEX_ALLOCATE_STACK alloca
304 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 REGEX_REALLOCATE (source, osize, nsize)
306 /* No need to explicitly free anything. */
307 #define REGEX_FREE_STACK(arg)
309 #endif /* not REGEX_MALLOC */
310 #endif /* not using relocating allocator */
313 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
314 `string1' or just past its end. This works if PTR is NULL, which is
316 #define FIRST_STRING_P(ptr) \
317 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
319 /* (Re)Allocate N items of type T using malloc, or fail. */
320 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
321 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
322 #define RETALLOC_IF(addr, n, t) \
323 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
324 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
326 #define BYTEWIDTH 8 /* In bits. */
328 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
332 #define MAX(a, b) ((a) > (b) ? (a) : (b))
333 #define MIN(a, b) ((a) < (b) ? (a) : (b))
335 typedef char boolean;
339 static int re_match_2_internal ();
341 /* These are the command codes that appear in compiled regular
342 expressions. Some opcodes are followed by argument bytes. A
343 command code can specify any interpretation whatsoever for its
344 arguments. Zero bytes may appear in the compiled regular expression. */
350 /* Succeed right away--no more backtracking. */
353 /* Followed by one byte giving n, then by n literal bytes. */
356 /* Matches any (more or less) character. */
359 /* Matches any one char belonging to specified set. First
360 following byte is number of bitmap bytes. Then come bytes
361 for a bitmap saying which chars are in. Bits in each byte
362 are ordered low-bit-first. A character is in the set if its
363 bit is 1. A character too large to have a bit in the map is
364 automatically not in the set. */
367 /* Same parameters as charset, but match any character that is
368 not one of those specified. */
371 /* Start remembering the text that is matched, for storing in a
372 register. Followed by one byte with the register number, in
373 the range 0 to one less than the pattern buffer's re_nsub
374 field. Then followed by one byte with the number of groups
375 inner to this one. (This last has to be part of the
376 start_memory only because we need it in the on_failure_jump
380 /* Stop remembering the text that is matched and store it in a
381 memory register. Followed by one byte with the register
382 number, in the range 0 to one less than `re_nsub' in the
383 pattern buffer, and one byte with the number of inner groups,
384 just like `start_memory'. (We need the number of inner
385 groups here because we don't have any easy way of finding the
386 corresponding start_memory when we're at a stop_memory.) */
389 /* Match a duplicate of something remembered. Followed by one
390 byte containing the register number. */
393 /* Fail unless at beginning of line. */
396 /* Fail unless at end of line. */
399 /* Succeeds if at beginning of buffer (if emacs) or at beginning
400 of string to be matched (if not). */
403 /* Analogously, for end of buffer/string. */
406 /* Followed by two byte relative address to which to jump. */
409 /* Same as jump, but marks the end of an alternative. */
412 /* Followed by two-byte relative address of place to resume at
413 in case of failure. */
416 /* Like on_failure_jump, but pushes a placeholder instead of the
417 current string position when executed. */
418 on_failure_keep_string_jump,
420 /* Throw away latest failure point and then jump to following
421 two-byte relative address. */
424 /* Change to pop_failure_jump if know won't have to backtrack to
425 match; otherwise change to jump. This is used to jump
426 back to the beginning of a repeat. If what follows this jump
427 clearly won't match what the repeat does, such that we can be
428 sure that there is no use backtracking out of repetitions
429 already matched, then we change it to a pop_failure_jump.
430 Followed by two-byte address. */
433 /* Jump to following two-byte address, and push a dummy failure
434 point. This failure point will be thrown away if an attempt
435 is made to use it for a failure. A `+' construct makes this
436 before the first repeat. Also used as an intermediary kind
437 of jump when compiling an alternative. */
440 /* Push a dummy failure point and continue. Used at the end of
444 /* Followed by two-byte relative address and two-byte number n.
445 After matching N times, jump to the address upon failure. */
448 /* Followed by two-byte relative address, and two-byte number n.
449 Jump to the address N times, then fail. */
452 /* Set the following two-byte relative address to the
453 subsequent two-byte number. The address *includes* the two
457 wordchar, /* Matches any word-constituent character. */
458 notwordchar, /* Matches any char that is not a word-constituent. */
460 wordbeg, /* Succeeds if at word beginning. */
461 wordend, /* Succeeds if at word end. */
463 wordbound, /* Succeeds if at a word boundary. */
464 notwordbound /* Succeeds if not at a word boundary. */
467 ,before_dot, /* Succeeds if before point. */
468 at_dot, /* Succeeds if at point. */
469 after_dot, /* Succeeds if after point. */
471 /* Matches any character whose syntax is specified. Followed by
472 a byte which contains a syntax code, e.g., Sword. */
475 /* Matches any character whose syntax is not that specified. */
480 /* Common operations on the compiled pattern. */
482 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
484 #define STORE_NUMBER(destination, number) \
486 (destination)[0] = (number) & 0377; \
487 (destination)[1] = (number) >> 8; \
490 /* Same as STORE_NUMBER, except increment DESTINATION to
491 the byte after where the number is stored. Therefore, DESTINATION
492 must be an lvalue. */
494 #define STORE_NUMBER_AND_INCR(destination, number) \
496 STORE_NUMBER (destination, number); \
497 (destination) += 2; \
500 /* Put into DESTINATION a number stored in two contiguous bytes starting
503 #define EXTRACT_NUMBER(destination, source) \
505 (destination) = *(source) & 0377; \
506 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
510 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
512 extract_number (dest, source)
514 unsigned char *source;
516 int temp = SIGN_EXTEND_CHAR (*(source + 1));
517 *dest = *source & 0377;
521 #ifndef EXTRACT_MACROS /* To debug the macros. */
522 #undef EXTRACT_NUMBER
523 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
524 #endif /* not EXTRACT_MACROS */
528 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
529 SOURCE must be an lvalue. */
531 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
533 EXTRACT_NUMBER (destination, source); \
538 static void extract_number_and_incr _RE_ARGS ((int *destination,
539 unsigned char **source));
541 extract_number_and_incr (destination, source)
543 unsigned char **source;
545 extract_number (destination, *source);
549 #ifndef EXTRACT_MACROS
550 #undef EXTRACT_NUMBER_AND_INCR
551 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
552 extract_number_and_incr (&dest, &src)
553 #endif /* not EXTRACT_MACROS */
557 /* If DEBUG is defined, Regex prints many voluminous messages about what
558 it is doing (if the variable `debug' is nonzero). If linked with the
559 main program in `iregex.c', you can enter patterns and strings
560 interactively. And if linked with the main program in `main.c' and
561 the other test files, you can run the already-written tests. */
565 /* We use standard I/O for debugging. */
568 /* It is useful to test things that ``must'' be true when debugging. */
571 static int debug = 0;
573 #define DEBUG_STATEMENT(e) e
574 #define DEBUG_PRINT1(x) if (debug) printf (x)
575 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
576 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
577 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
578 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
579 if (debug) print_partial_compiled_pattern (s, e)
580 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
581 if (debug) print_double_string (w, s1, sz1, s2, sz2)
584 /* Print the fastmap in human-readable form. */
587 print_fastmap (fastmap)
590 unsigned was_a_range = 0;
593 while (i < (1 << BYTEWIDTH))
599 while (i < (1 << BYTEWIDTH) && fastmap[i])
615 /* Print a compiled pattern string in human-readable form, starting at
616 the START pointer into it and ending just before the pointer END. */
619 print_partial_compiled_pattern (start, end)
620 unsigned char *start;
625 unsigned char *p = start;
626 unsigned char *pend = end;
634 /* Loop over pattern commands. */
637 printf ("%d:\t", p - start);
639 switch ((re_opcode_t) *p++)
647 printf ("/exactn/%d", mcnt);
658 printf ("/start_memory/%d/%d", mcnt, *p++);
663 printf ("/stop_memory/%d/%d", mcnt, *p++);
667 printf ("/duplicate/%d", *p++);
677 register int c, last = -100;
678 register int in_range = 0;
680 printf ("/charset [%s",
681 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
683 assert (p + *p < pend);
685 for (c = 0; c < 256; c++)
687 && (p[1 + (c/8)] & (1 << (c % 8))))
689 /* Are we starting a range? */
690 if (last + 1 == c && ! in_range)
695 /* Have we broken a range? */
696 else if (last + 1 != c && in_range)
725 case on_failure_jump:
726 extract_number_and_incr (&mcnt, &p);
727 printf ("/on_failure_jump to %d", p + mcnt - start);
730 case on_failure_keep_string_jump:
731 extract_number_and_incr (&mcnt, &p);
732 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
735 case dummy_failure_jump:
736 extract_number_and_incr (&mcnt, &p);
737 printf ("/dummy_failure_jump to %d", p + mcnt - start);
740 case push_dummy_failure:
741 printf ("/push_dummy_failure");
745 extract_number_and_incr (&mcnt, &p);
746 printf ("/maybe_pop_jump to %d", p + mcnt - start);
749 case pop_failure_jump:
750 extract_number_and_incr (&mcnt, &p);
751 printf ("/pop_failure_jump to %d", p + mcnt - start);
755 extract_number_and_incr (&mcnt, &p);
756 printf ("/jump_past_alt to %d", p + mcnt - start);
760 extract_number_and_incr (&mcnt, &p);
761 printf ("/jump to %d", p + mcnt - start);
765 extract_number_and_incr (&mcnt, &p);
767 extract_number_and_incr (&mcnt2, &p);
768 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
772 extract_number_and_incr (&mcnt, &p);
774 extract_number_and_incr (&mcnt2, &p);
775 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
779 extract_number_and_incr (&mcnt, &p);
781 extract_number_and_incr (&mcnt2, &p);
782 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
786 printf ("/wordbound");
790 printf ("/notwordbound");
802 printf ("/before_dot");
810 printf ("/after_dot");
814 printf ("/syntaxspec");
816 printf ("/%d", mcnt);
820 printf ("/notsyntaxspec");
822 printf ("/%d", mcnt);
827 printf ("/wordchar");
831 printf ("/notwordchar");
843 printf ("?%d", *(p-1));
849 printf ("%d:\tend of pattern.\n", p - start);
854 print_compiled_pattern (bufp)
855 struct re_pattern_buffer *bufp;
857 unsigned char *buffer = bufp->buffer;
859 print_partial_compiled_pattern (buffer, buffer + bufp->used);
860 printf ("%ld bytes used/%ld bytes allocated.\n",
861 bufp->used, bufp->allocated);
863 if (bufp->fastmap_accurate && bufp->fastmap)
865 printf ("fastmap: ");
866 print_fastmap (bufp->fastmap);
869 printf ("re_nsub: %d\t", bufp->re_nsub);
870 printf ("regs_alloc: %d\t", bufp->regs_allocated);
871 printf ("can_be_null: %d\t", bufp->can_be_null);
872 printf ("newline_anchor: %d\n", bufp->newline_anchor);
873 printf ("no_sub: %d\t", bufp->no_sub);
874 printf ("not_bol: %d\t", bufp->not_bol);
875 printf ("not_eol: %d\t", bufp->not_eol);
876 printf ("syntax: %lx\n", bufp->syntax);
877 /* Perhaps we should print the translate table? */
882 print_double_string (where, string1, size1, string2, size2)
895 if (FIRST_STRING_P (where))
897 for (this_char = where - string1; this_char < size1; this_char++)
898 putchar (string1[this_char]);
903 for (this_char = where - string2; this_char < size2; this_char++)
904 putchar (string2[this_char]);
915 #else /* not DEBUG */
920 #define DEBUG_STATEMENT(e)
921 #define DEBUG_PRINT1(x)
922 #define DEBUG_PRINT2(x1, x2)
923 #define DEBUG_PRINT3(x1, x2, x3)
924 #define DEBUG_PRINT4(x1, x2, x3, x4)
925 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
926 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
928 #endif /* not DEBUG */
930 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
931 also be assigned to arbitrarily: each pattern buffer stores its own
932 syntax, so it can be changed between regex compilations. */
933 /* This has no initializer because initialized variables in Emacs
934 become read-only after dumping. */
935 reg_syntax_t re_syntax_options;
938 /* Specify the precise syntax of regexps for compilation. This provides
939 for compatibility for various utilities which historically have
940 different, incompatible syntaxes.
942 The argument SYNTAX is a bit mask comprised of the various bits
943 defined in regex.h. We return the old syntax. */
946 re_set_syntax (syntax)
949 reg_syntax_t ret = re_syntax_options;
951 re_syntax_options = syntax;
953 if (syntax & RE_DEBUG)
955 else if (debug) /* was on but now is not */
963 re_set_character_syntax (unsigned char ch, char syntax)
965 re_set_character_syntax (ch, syntax)
968 #endif /* not __STDC__ */
983 /* This is an error, but we don't care. */
989 /* This table gives an error message for each of the error codes listed
990 in regex.h. Obviously the order here has to be same as there.
991 POSIX doesn't require that we do anything for REG_NOERROR,
992 but why not be nice? */
994 static const char *re_error_msgid[] =
996 gettext_noop ("Success"), /* REG_NOERROR */
997 gettext_noop ("No match"), /* REG_NOMATCH */
998 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
999 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1004 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1008 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1015 /* Avoiding alloca during matching, to placate r_alloc. */
1017 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018 searching and matching functions should not call alloca. On some
1019 systems, alloca is implemented in terms of malloc, and if we're
1020 using the relocating allocator routines, then malloc could cause a
1021 relocation, which might (if the strings being searched are in the
1022 ralloc heap) shift the data out from underneath the regexp
1025 Here's another reason to avoid allocation: Emacs
1026 processes input from X in a signal handler; processing X input may
1027 call malloc; if input arrives while a matching routine is calling
1028 malloc, then we're scrod. But Emacs can't just block input while
1029 calling matching routines; then we don't notice interrupts when
1030 they come in. So, Emacs blocks input around all regexp calls
1031 except the matching calls, which it leaves unprotected, in the
1032 faith that they will not malloc. */
1034 /* Normally, this is fine. */
1035 #define MATCH_MAY_ALLOCATE
1037 /* When using GNU C, we are not REALLY using the C alloca, no matter
1038 what config.h may say. So don't take precautions for it. */
1043 /* The match routines may not allocate if (1) they would do it with malloc
1044 and (2) it's not safe for them to use malloc.
1045 Note that if REL_ALLOC is defined, matching would not use malloc for the
1046 failure stack, but we would still use it for the register vectors;
1047 so REL_ALLOC should not affect this. */
1048 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1049 #undef MATCH_MAY_ALLOCATE
1053 /* Failure stack declarations and macros; both re_compile_fastmap and
1054 re_match_2 use a failure stack. These have to be macros because of
1055 REGEX_ALLOCATE_STACK. */
1058 /* Number of failure points for which to initially allocate space
1059 when matching. If this number is exceeded, we allocate more
1060 space, so it is not a hard limit. */
1061 #ifndef INIT_FAILURE_ALLOC
1062 #define INIT_FAILURE_ALLOC 5
1065 /* Roughly the maximum number of failure points on the stack. Would be
1066 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067 This is a variable only so users of regex can assign to it; we never
1068 change it ourselves. */
1072 #if defined (MATCH_MAY_ALLOCATE)
1073 /* 4400 was enough to cause a crash on Alpha OSF/1,
1074 whose default stack limit is 2mb. */
1075 long int re_max_failures = 4000;
1077 long int re_max_failures = 2000;
1080 union fail_stack_elt
1082 unsigned char *pointer;
1086 typedef union fail_stack_elt fail_stack_elt_t;
1090 fail_stack_elt_t *stack;
1091 unsigned long int size;
1092 unsigned long int avail; /* Offset of next open position. */
1095 #else /* not INT_IS_16BIT */
1097 #if defined (MATCH_MAY_ALLOCATE)
1098 /* 4400 was enough to cause a crash on Alpha OSF/1,
1099 whose default stack limit is 2mb. */
1100 int re_max_failures = 20000;
1102 int re_max_failures = 2000;
1105 union fail_stack_elt
1107 unsigned char *pointer;
1111 typedef union fail_stack_elt fail_stack_elt_t;
1115 fail_stack_elt_t *stack;
1117 unsigned avail; /* Offset of next open position. */
1120 #endif /* INT_IS_16BIT */
1122 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1123 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1127 /* Define macros to initialize and free the failure stack.
1128 Do `return -2' if the alloc fails. */
1130 #ifdef MATCH_MAY_ALLOCATE
1131 #define INIT_FAIL_STACK() \
1133 fail_stack.stack = (fail_stack_elt_t *) \
1134 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1136 if (fail_stack.stack == NULL) \
1139 fail_stack.size = INIT_FAILURE_ALLOC; \
1140 fail_stack.avail = 0; \
1143 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1145 #define INIT_FAIL_STACK() \
1147 fail_stack.avail = 0; \
1150 #define RESET_FAIL_STACK()
1154 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1156 Return 1 if succeeds, and 0 if either ran out of memory
1157 allocating space for it or it was already too large.
1159 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1161 #define DOUBLE_FAIL_STACK(fail_stack) \
1162 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1164 : ((fail_stack).stack = (fail_stack_elt_t *) \
1165 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1166 (fail_stack).size * sizeof (fail_stack_elt_t), \
1167 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1169 (fail_stack).stack == NULL \
1171 : ((fail_stack).size <<= 1, \
1175 /* Push pointer POINTER on FAIL_STACK.
1176 Return 1 if was able to do so and 0 if ran out of memory allocating
1178 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1179 ((FAIL_STACK_FULL () \
1180 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1182 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1185 /* Push a pointer value onto the failure stack.
1186 Assumes the variable `fail_stack'. Probably should only
1187 be called from within `PUSH_FAILURE_POINT'. */
1188 #define PUSH_FAILURE_POINTER(item) \
1189 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1191 /* This pushes an integer-valued item onto the failure stack.
1192 Assumes the variable `fail_stack'. Probably should only
1193 be called from within `PUSH_FAILURE_POINT'. */
1194 #define PUSH_FAILURE_INT(item) \
1195 fail_stack.stack[fail_stack.avail++].integer = (item)
1197 /* Push a fail_stack_elt_t value onto the failure stack.
1198 Assumes the variable `fail_stack'. Probably should only
1199 be called from within `PUSH_FAILURE_POINT'. */
1200 #define PUSH_FAILURE_ELT(item) \
1201 fail_stack.stack[fail_stack.avail++] = (item)
1203 /* These three POP... operations complement the three PUSH... operations.
1204 All assume that `fail_stack' is nonempty. */
1205 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1209 /* Used to omit pushing failure point id's when we're not debugging. */
1211 #define DEBUG_PUSH PUSH_FAILURE_INT
1212 #define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
1214 #define DEBUG_PUSH(item)
1215 #define DEBUG_POP(item_addr)
1219 /* Push the information about the state we will need
1220 if we ever fail back to it.
1222 Requires variables fail_stack, regstart, regend, reg_info, and
1223 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1226 Does `return FAILURE_CODE' if runs out of memory. */
1228 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1230 char *destination; \
1231 /* Must be int, so when we don't save any registers, the arithmetic \
1232 of 0 + -1 isn't done as unsigned. */ \
1233 /* Can't be int, since there is not a shred of a guarantee that int \
1234 is wide enough to hold a value of something to which pointer can \
1238 DEBUG_STATEMENT (failure_id++); \
1239 DEBUG_STATEMENT (nfailure_points_pushed++); \
1240 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1241 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1242 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1244 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1245 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1247 /* Ensure we have enough space allocated for what we will push. */ \
1248 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1250 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1251 return failure_code; \
1253 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1254 (fail_stack).size); \
1255 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1258 /* Push the info, starting with the registers. */ \
1259 DEBUG_PRINT1 ("\n"); \
1262 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1265 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1266 DEBUG_STATEMENT (num_regs_pushed++); \
1268 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1269 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1271 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1272 PUSH_FAILURE_POINTER (regend[this_reg]); \
1274 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1275 DEBUG_PRINT2 (" match_null=%d", \
1276 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1277 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" matched_something=%d", \
1279 MATCHED_SOMETHING (reg_info[this_reg])); \
1280 DEBUG_PRINT2 (" ever_matched=%d", \
1281 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1282 DEBUG_PRINT1 ("\n"); \
1283 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1286 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1287 PUSH_FAILURE_INT (lowest_active_reg); \
1289 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1290 PUSH_FAILURE_INT (highest_active_reg); \
1292 DEBUG_PRINT2 (" Pushing pattern 0x%x:\n", pattern_place); \
1293 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1294 PUSH_FAILURE_POINTER (pattern_place); \
1296 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1297 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1299 DEBUG_PRINT1 ("'\n"); \
1300 PUSH_FAILURE_POINTER (string_place); \
1302 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1303 DEBUG_PUSH (failure_id); \
1306 /* This is the number of items that are pushed and popped on the stack
1307 for each register. */
1308 #define NUM_REG_ITEMS 3
1310 /* Individual items aside from the registers. */
1312 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1314 #define NUM_NONREG_ITEMS 4
1317 /* We push at most this many items on the stack. */
1318 /* We used to use (num_regs - 1), which is the number of registers
1319 this regexp will save; but that was changed to 5
1320 to avoid stack overflow for a regexp with lots of parens. */
1321 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1323 /* We actually push this many items. */
1324 #define NUM_FAILURE_ITEMS \
1326 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1330 /* How many items can still be added to the stack without overflowing it. */
1331 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1334 /* Pops what PUSH_FAIL_STACK pushes.
1336 We restore into the parameters, all of which should be lvalues:
1337 STR -- the saved data position.
1338 PAT -- the saved pattern position.
1339 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1340 REGSTART, REGEND -- arrays of string positions.
1341 REG_INFO -- array of information about each subexpression.
1343 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1344 `pend', `string1', `size1', `string2', and `size2'. */
1346 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1348 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1350 const unsigned char *string_temp; \
1352 assert (!FAIL_STACK_EMPTY ()); \
1354 /* Remove failure points and point to how many regs pushed. */ \
1355 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1356 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1357 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1359 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1361 DEBUG_POP (&failure_id); \
1362 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1364 /* If the saved string location is NULL, it came from an \
1365 on_failure_keep_string_jump opcode, and we want to throw away the \
1366 saved NULL, thus retaining our current position in the string. */ \
1367 string_temp = POP_FAILURE_POINTER (); \
1368 if (string_temp != NULL) \
1369 str = (const char *) string_temp; \
1371 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1372 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1373 DEBUG_PRINT1 ("'\n"); \
1375 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1376 DEBUG_PRINT2 (" Popping pattern 0x%x:\n", pat); \
1377 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1379 /* Restore register info. */ \
1380 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1381 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1383 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1384 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1387 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1389 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1391 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1392 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1394 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1395 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1397 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1398 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1402 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1404 reg_info[this_reg].word.integer = 0; \
1405 regend[this_reg] = 0; \
1406 regstart[this_reg] = 0; \
1408 highest_active_reg = high_reg; \
1411 set_regs_matched_done = 0; \
1412 DEBUG_STATEMENT (nfailure_points_popped++); \
1413 } /* POP_FAILURE_POINT */
1417 /* Structure for per-register (a.k.a. per-group) information.
1418 Other register information, such as the
1419 starting and ending positions (which are addresses), and the list of
1420 inner groups (which is a bits list) are maintained in separate
1423 We are making a (strictly speaking) nonportable assumption here: that
1424 the compiler will pack our bit fields into something that fits into
1425 the type of `word', i.e., is something that fits into one item on the
1429 /* Declarations and macros for re_match_2. */
1433 fail_stack_elt_t word;
1436 /* This field is one if this group can match the empty string,
1437 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1438 #define MATCH_NULL_UNSET_VALUE 3
1439 unsigned match_null_string_p : 2;
1440 unsigned is_active : 1;
1441 unsigned matched_something : 1;
1442 unsigned ever_matched_something : 1;
1444 } register_info_type;
1446 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1447 #define IS_ACTIVE(R) ((R).bits.is_active)
1448 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1449 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1452 /* Call this when have matched a real character; it sets `matched' flags
1453 for the subexpressions which we are currently inside. Also records
1454 that those subexprs have matched. */
1455 #define SET_REGS_MATCHED() \
1458 if (!set_regs_matched_done) \
1461 set_regs_matched_done = 1; \
1462 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1464 MATCHED_SOMETHING (reg_info[r]) \
1465 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1472 /* Registers are set to a sentinel when they haven't yet matched. */
1473 static char reg_unset_dummy;
1474 #define REG_UNSET_VALUE (®_unset_dummy)
1475 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1477 /* Subroutine declarations and macros for regex_compile. */
1479 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1480 reg_syntax_t syntax,
1481 struct re_pattern_buffer *bufp));
1482 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1483 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1484 int arg1, int arg2));
1485 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486 int arg, unsigned char *end));
1487 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488 int arg1, int arg2, unsigned char *end));
1489 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1490 reg_syntax_t syntax));
1491 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1492 reg_syntax_t syntax));
1493 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1496 reg_syntax_t syntax,
1499 /* Fetch the next character in the uncompiled pattern---translating it
1500 if necessary. Also cast from a signed character in the constant
1501 string passed to us by the user to an unsigned char that we can use
1502 as an array index (in, e.g., `translate'). */
1504 #define PATFETCH(c) \
1505 do {if (p == pend) return REG_EEND; \
1506 c = (unsigned char) *p++; \
1507 if (translate) c = (unsigned char) translate[c]; \
1511 /* Fetch the next character in the uncompiled pattern, with no
1513 #define PATFETCH_RAW(c) \
1514 do {if (p == pend) return REG_EEND; \
1515 c = (unsigned char) *p++; \
1518 /* Go backwards one character in the pattern. */
1519 #define PATUNFETCH p--
1522 /* If `translate' is non-null, return translate[D], else just D. We
1523 cast the subscript to translate because some data is declared as
1524 `char *', to avoid warnings when a string constant is passed. But
1525 when we use a character as a subscript we must make it unsigned. */
1527 #define TRANSLATE(d) \
1528 (translate ? (char) translate[(unsigned char) (d)] : (d))
1532 /* Macros for outputting the compiled pattern into `buffer'. */
1534 /* If the buffer isn't allocated when it comes in, use this. */
1535 #define INIT_BUF_SIZE 32
1537 /* Make sure we have at least N more bytes of space in buffer. */
1538 #define GET_BUFFER_SPACE(n) \
1539 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1542 /* Make sure we have one more byte of buffer space and then add C to it. */
1543 #define BUF_PUSH(c) \
1545 GET_BUFFER_SPACE (1); \
1546 *b++ = (unsigned char) (c); \
1550 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1551 #define BUF_PUSH_2(c1, c2) \
1553 GET_BUFFER_SPACE (2); \
1554 *b++ = (unsigned char) (c1); \
1555 *b++ = (unsigned char) (c2); \
1559 /* As with BUF_PUSH_2, except for three bytes. */
1560 #define BUF_PUSH_3(c1, c2, c3) \
1562 GET_BUFFER_SPACE (3); \
1563 *b++ = (unsigned char) (c1); \
1564 *b++ = (unsigned char) (c2); \
1565 *b++ = (unsigned char) (c3); \
1569 /* Store a jump with opcode OP at LOC to location TO. We store a
1570 relative address offset by the three bytes the jump itself occupies. */
1571 #define STORE_JUMP(op, loc, to) \
1572 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1574 /* Likewise, for a two-argument jump. */
1575 #define STORE_JUMP2(op, loc, to, arg) \
1576 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1578 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1579 #define INSERT_JUMP(op, loc, to) \
1580 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1582 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1583 #define INSERT_JUMP2(op, loc, to, arg) \
1584 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1587 /* This is not an arbitrary limit: the arguments which represent offsets
1588 into the pattern are two bytes long. So if 2^16 bytes turns out to
1589 be too small, many things would have to change. */
1590 /* Any other compiler which, like MSC, has allocation limit below 2^16
1591 bytes will have to use approach similar to what was done below for
1592 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1593 reallocating to 0 bytes. Such thing is not going to work too well.
1594 You have been warned!! */
1595 #if defined(_MSC_VER) && !defined(WIN32)
1596 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1597 The REALLOC define eliminates a flurry of conversion warnings,
1598 but is not required. */
1599 #define MAX_BUF_SIZE 65500L
1600 #define REALLOC(p,s) realloc ((p), (size_t) (s))
1602 #define MAX_BUF_SIZE (1L << 16)
1603 #define REALLOC(p,s) realloc ((p), (s))
1606 /* Extend the buffer by twice its current size via realloc and
1607 reset the pointers that pointed into the old block to point to the
1608 correct places in the new one. If extending the buffer results in it
1609 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1610 #define EXTEND_BUFFER() \
1612 unsigned char *old_buffer = bufp->buffer; \
1613 if (bufp->allocated == MAX_BUF_SIZE) \
1615 bufp->allocated <<= 1; \
1616 if (bufp->allocated > MAX_BUF_SIZE) \
1617 bufp->allocated = MAX_BUF_SIZE; \
1618 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1619 if (bufp->buffer == NULL) \
1620 return REG_ESPACE; \
1621 /* If the buffer moved, move all the pointers into it. */ \
1622 if (old_buffer != bufp->buffer) \
1624 b = (b - old_buffer) + bufp->buffer; \
1625 begalt = (begalt - old_buffer) + bufp->buffer; \
1626 if (fixup_alt_jump) \
1627 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1629 laststart = (laststart - old_buffer) + bufp->buffer; \
1630 if (pending_exact) \
1631 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1636 /* Since we have one byte reserved for the register number argument to
1637 {start,stop}_memory, the maximum number of groups we can report
1638 things about is what fits in that byte. */
1639 #define MAX_REGNUM 255
1641 /* But patterns can have more than `MAX_REGNUM' registers. We just
1642 ignore the excess. */
1643 typedef unsigned regnum_t;
1646 /* Macros for the compile stack. */
1648 /* Since offsets can go either forwards or backwards, this type needs to
1649 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1650 /* int may be not enough when sizeof(int) == 2. */
1651 typedef long pattern_offset_t;
1655 pattern_offset_t begalt_offset;
1656 pattern_offset_t fixup_alt_jump;
1657 pattern_offset_t inner_group_offset;
1658 pattern_offset_t laststart_offset;
1660 } compile_stack_elt_t;
1665 compile_stack_elt_t *stack;
1667 unsigned avail; /* Offset of next open position. */
1668 } compile_stack_type;
1671 #define INIT_COMPILE_STACK_SIZE 32
1673 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1674 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1676 /* The next available element. */
1677 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1680 /* Set the bit for character C in a list. */
1681 #define SET_LIST_BIT(c) \
1682 (b[((unsigned char) (c)) / BYTEWIDTH] \
1683 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1686 /* Get the next unsigned number in the uncompiled pattern. */
1687 #define GET_UNSIGNED_NUMBER(num) \
1691 while (ISDIGIT (c)) \
1695 num = num * 10 + c - '0'; \
1703 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1704 /* The GNU C library provides support for user-defined character classes
1705 and the functions from ISO C amendement 1. */
1706 # ifdef CHARCLASS_NAME_MAX
1707 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1709 /* This shouldn't happen but some implementation might still have this
1710 problem. Use a reasonable default value. */
1711 # define CHAR_CLASS_MAX_LENGTH 256
1714 # define IS_CHAR_CLASS(string) wctype (string)
1716 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1718 # define IS_CHAR_CLASS(string) \
1719 (STREQ (string, "alpha") || STREQ (string, "upper") \
1720 || STREQ (string, "lower") || STREQ (string, "digit") \
1721 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1722 || STREQ (string, "space") || STREQ (string, "print") \
1723 || STREQ (string, "punct") || STREQ (string, "graph") \
1724 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1727 #ifndef MATCH_MAY_ALLOCATE
1729 /* If we cannot allocate large objects within re_match_2_internal,
1730 we make the fail stack and register vectors global.
1731 The fail stack, we grow to the maximum size when a regexp
1733 The register vectors, we adjust in size each time we
1734 compile a regexp, according to the number of registers it needs. */
1736 static fail_stack_type fail_stack;
1738 /* Size with which the following vectors are currently allocated.
1739 That is so we can make them bigger as needed,
1740 but never make them smaller. */
1741 static int regs_allocated_size;
1743 static const char ** regstart, ** regend;
1744 static const char ** old_regstart, ** old_regend;
1745 static const char **best_regstart, **best_regend;
1746 static register_info_type *reg_info;
1747 static const char **reg_dummy;
1748 static register_info_type *reg_info_dummy;
1750 /* Make the register vectors big enough for NUM_REGS registers,
1751 but don't make them smaller. */
1754 regex_grow_registers (num_regs)
1757 if (num_regs > regs_allocated_size)
1759 RETALLOC_IF (regstart, num_regs, const char *);
1760 RETALLOC_IF (regend, num_regs, const char *);
1761 RETALLOC_IF (old_regstart, num_regs, const char *);
1762 RETALLOC_IF (old_regend, num_regs, const char *);
1763 RETALLOC_IF (best_regstart, num_regs, const char *);
1764 RETALLOC_IF (best_regend, num_regs, const char *);
1765 RETALLOC_IF (reg_info, num_regs, register_info_type);
1766 RETALLOC_IF (reg_dummy, num_regs, const char *);
1767 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1769 regs_allocated_size = num_regs;
1773 #endif /* not MATCH_MAY_ALLOCATE */
1775 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1779 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1780 Returns one of error codes defined in `regex.h', or zero for success.
1782 Assumes the `allocated' (and perhaps `buffer') and `translate'
1783 fields are set in BUFP on entry.
1785 If it succeeds, results are put in BUFP (if it returns an error, the
1786 contents of BUFP are undefined):
1787 `buffer' is the compiled pattern;
1788 `syntax' is set to SYNTAX;
1789 `used' is set to the length of the compiled pattern;
1790 `fastmap_accurate' is zero;
1791 `re_nsub' is the number of subexpressions in PATTERN;
1792 `not_bol' and `not_eol' are zero;
1794 The `fastmap' and `newline_anchor' fields are neither
1795 examined nor set. */
1797 /* Return, freeing storage we allocated. */
1798 #define FREE_STACK_RETURN(value) \
1799 return (free (compile_stack.stack), value)
1801 static reg_errcode_t
1802 regex_compile (pattern, size, syntax, bufp)
1803 const char *pattern;
1805 reg_syntax_t syntax;
1806 struct re_pattern_buffer *bufp;
1808 /* We fetch characters from PATTERN here. Even though PATTERN is
1809 `char *' (i.e., signed), we declare these variables as unsigned, so
1810 they can be reliably used as array indices. */
1811 register unsigned char c, c1;
1813 /* A random temporary spot in PATTERN. */
1816 /* Points to the end of the buffer, where we should append. */
1817 register unsigned char *b;
1819 /* Keeps track of unclosed groups. */
1820 compile_stack_type compile_stack;
1822 /* Points to the current (ending) position in the pattern. */
1823 const char *p = pattern;
1824 const char *pend = pattern + size;
1826 /* How to translate the characters in the pattern. */
1827 RE_TRANSLATE_TYPE translate = bufp->translate;
1829 /* Address of the count-byte of the most recently inserted `exactn'
1830 command. This makes it possible to tell if a new exact-match
1831 character can be added to that command or if the character requires
1832 a new `exactn' command. */
1833 unsigned char *pending_exact = 0;
1835 /* Address of start of the most recently finished expression.
1836 This tells, e.g., postfix * where to find the start of its
1837 operand. Reset at the beginning of groups and alternatives. */
1838 unsigned char *laststart = 0;
1840 /* Address of beginning of regexp, or inside of last group. */
1841 unsigned char *begalt;
1843 /* Place in the uncompiled pattern (i.e., the {) to
1844 which to go back if the interval is invalid. */
1845 const char *beg_interval;
1847 /* Address of the place where a forward jump should go to the end of
1848 the containing expression. Each alternative of an `or' -- except the
1849 last -- ends with a forward jump of this sort. */
1850 unsigned char *fixup_alt_jump = 0;
1852 /* Counts open-groups as they are encountered. Remembered for the
1853 matching close-group on the compile stack, so the same register
1854 number is put in the stop_memory as the start_memory. */
1855 regnum_t regnum = 0;
1858 DEBUG_PRINT1 ("\nCompiling pattern: ");
1861 unsigned debug_count;
1863 for (debug_count = 0; debug_count < size; debug_count++)
1864 putchar (pattern[debug_count]);
1869 /* Initialize the compile stack. */
1870 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1871 if (compile_stack.stack == NULL)
1874 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1875 compile_stack.avail = 0;
1877 /* Initialize the pattern buffer. */
1878 bufp->syntax = syntax;
1879 bufp->fastmap_accurate = 0;
1880 bufp->not_bol = bufp->not_eol = 0;
1882 /* Set `used' to zero, so that if we return an error, the pattern
1883 printer (for debugging) will think there's no pattern. We reset it
1887 /* Always count groups, whether or not bufp->no_sub is set. */
1890 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1891 /* Initialize the syntax table. */
1892 init_syntax_once ();
1895 if (bufp->allocated == 0)
1898 { /* If zero allocated, but buffer is non-null, try to realloc
1899 enough space. This loses if buffer's address is bogus, but
1900 that is the user's responsibility. */
1901 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1904 { /* Caller did not allocate a buffer. Do it for them. */
1905 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1907 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1909 bufp->allocated = INIT_BUF_SIZE;
1912 begalt = b = bufp->buffer;
1914 /* Loop through the uncompiled pattern until we're at the end. */
1923 if ( /* If at start of pattern, it's an operator. */
1925 /* If context independent, it's an operator. */
1926 || syntax & RE_CONTEXT_INDEP_ANCHORS
1927 /* Otherwise, depends on what's come before. */
1928 || at_begline_loc_p (pattern, p, syntax))
1938 if ( /* If at end of pattern, it's an operator. */
1940 /* If context independent, it's an operator. */
1941 || syntax & RE_CONTEXT_INDEP_ANCHORS
1942 /* Otherwise, depends on what's next. */
1943 || at_endline_loc_p (p, pend, syntax))
1953 if ((syntax & RE_BK_PLUS_QM)
1954 || (syntax & RE_LIMITED_OPS))
1958 /* If there is no previous pattern... */
1961 if (syntax & RE_CONTEXT_INVALID_OPS)
1962 FREE_STACK_RETURN (REG_BADRPT);
1963 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1968 /* Are we optimizing this jump? */
1969 boolean keep_string_p = false;
1971 /* 1 means zero (many) matches is allowed. */
1972 char zero_times_ok = 0, many_times_ok = 0;
1974 /* If there is a sequence of repetition chars, collapse it
1975 down to just one (the right one). We can't combine
1976 interval operators with these because of, e.g., `a{2}*',
1977 which should only match an even number of `a's. */
1981 zero_times_ok |= c != '+';
1982 many_times_ok |= c != '?';
1990 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1993 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1995 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1998 if (!(c1 == '+' || c1 == '?'))
2013 /* If we get here, we found another repeat character. */
2016 /* Star, etc. applied to an empty pattern is equivalent
2017 to an empty pattern. */
2021 /* Now we know whether or not zero matches is allowed
2022 and also whether or not two or more matches is allowed. */
2024 { /* More than one repetition is allowed, so put in at the
2025 end a backward relative jump from `b' to before the next
2026 jump we're going to put in below (which jumps from
2027 laststart to after this jump).
2029 But if we are at the `*' in the exact sequence `.*\n',
2030 insert an unconditional jump backwards to the .,
2031 instead of the beginning of the loop. This way we only
2032 push a failure point once, instead of every time
2033 through the loop. */
2034 assert (p - 1 > pattern);
2036 /* Allocate the space for the jump. */
2037 GET_BUFFER_SPACE (3);
2039 /* We know we are not at the first character of the pattern,
2040 because laststart was nonzero. And we've already
2041 incremented `p', by the way, to be the character after
2042 the `*'. Do we have to do something analogous here
2043 for null bytes, because of RE_DOT_NOT_NULL? */
2044 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2046 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2047 && !(syntax & RE_DOT_NEWLINE))
2048 { /* We have .*\n. */
2049 STORE_JUMP (jump, b, laststart);
2050 keep_string_p = true;
2053 /* Anything else. */
2054 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2056 /* We've added more stuff to the buffer. */
2060 /* On failure, jump from laststart to b + 3, which will be the
2061 end of the buffer after this jump is inserted. */
2062 GET_BUFFER_SPACE (3);
2063 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2071 /* At least one repetition is required, so insert a
2072 `dummy_failure_jump' before the initial
2073 `on_failure_jump' instruction of the loop. This
2074 effects a skip over that instruction the first time
2075 we hit that loop. */
2076 GET_BUFFER_SPACE (3);
2077 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2092 boolean had_char_class = false;
2094 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2096 /* Ensure that we have enough space to push a charset: the
2097 opcode, the length count, and the bitset; 34 bytes in all. */
2098 GET_BUFFER_SPACE (34);
2102 /* We test `*p == '^' twice, instead of using an if
2103 statement, so we only need one BUF_PUSH. */
2104 BUF_PUSH (*p == '^' ? charset_not : charset);
2108 /* Remember the first position in the bracket expression. */
2111 /* Push the number of bytes in the bitmap. */
2112 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2114 /* Clear the whole map. */
2115 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2117 /* charset_not matches newline according to a syntax bit. */
2118 if ((re_opcode_t) b[-2] == charset_not
2119 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2120 SET_LIST_BIT ('\n');
2122 /* Read in characters and ranges, setting map bits. */
2125 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2129 /* \ might escape characters inside [...] and [^...]. */
2130 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2132 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2139 /* Could be the end of the bracket expression. If it's
2140 not (i.e., when the bracket expression is `[]' so
2141 far), the ']' character bit gets set way below. */
2142 if (c == ']' && p != p1 + 1)
2145 /* Look ahead to see if it's a range when the last thing
2146 was a character class. */
2147 if (had_char_class && c == '-' && *p != ']')
2148 FREE_STACK_RETURN (REG_ERANGE);
2150 /* Look ahead to see if it's a range when the last thing
2151 was a character: if this is a hyphen not at the
2152 beginning or the end of a list, then it's the range
2155 && !(p - 2 >= pattern && p[-2] == '[')
2156 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2160 = compile_range (&p, pend, translate, syntax, b);
2161 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2164 else if (p[0] == '-' && p[1] != ']')
2165 { /* This handles ranges made up of characters only. */
2168 /* Move past the `-'. */
2171 ret = compile_range (&p, pend, translate, syntax, b);
2172 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2175 /* See if we're at the beginning of a possible character
2178 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2179 { /* Leave room for the null. */
2180 char str[CHAR_CLASS_MAX_LENGTH + 1];
2185 /* If pattern is `[[:'. */
2186 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2191 if (c == ':' || c == ']' || p == pend
2192 || c1 == CHAR_CLASS_MAX_LENGTH)
2198 /* If isn't a word bracketed by `[:' and:`]':
2199 undo the ending character, the letters, and leave
2200 the leading `:' and `[' (but set bits for them). */
2201 if (c == ':' && *p == ']')
2203 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2204 boolean is_lower = STREQ (str, "lower");
2205 boolean is_upper = STREQ (str, "upper");
2211 FREE_STACK_RETURN (REG_ECTYPE);
2213 /* Throw away the ] at the end of the character
2217 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2219 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2221 if (iswctype (btowc (ch), wt))
2224 if (translate && (is_upper || is_lower)
2225 && (ISUPPER (ch) || ISLOWER (ch)))
2229 had_char_class = true;
2232 boolean is_alnum = STREQ (str, "alnum");
2233 boolean is_alpha = STREQ (str, "alpha");
2234 boolean is_blank = STREQ (str, "blank");
2235 boolean is_cntrl = STREQ (str, "cntrl");
2236 boolean is_digit = STREQ (str, "digit");
2237 boolean is_graph = STREQ (str, "graph");
2238 boolean is_lower = STREQ (str, "lower");
2239 boolean is_print = STREQ (str, "print");
2240 boolean is_punct = STREQ (str, "punct");
2241 boolean is_space = STREQ (str, "space");
2242 boolean is_upper = STREQ (str, "upper");
2243 boolean is_xdigit = STREQ (str, "xdigit");
2245 if (!IS_CHAR_CLASS (str))
2246 FREE_STACK_RETURN (REG_ECTYPE);
2248 /* Throw away the ] at the end of the character
2252 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2254 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2256 /* This was split into 3 if's to
2257 avoid an arbitrary limit in some compiler. */
2258 if ( (is_alnum && ISALNUM (ch))
2259 || (is_alpha && ISALPHA (ch))
2260 || (is_blank && ISBLANK (ch))
2261 || (is_cntrl && ISCNTRL (ch)))
2263 if ( (is_digit && ISDIGIT (ch))
2264 || (is_graph && ISGRAPH (ch))
2265 || (is_lower && ISLOWER (ch))
2266 || (is_print && ISPRINT (ch)))
2268 if ( (is_punct && ISPUNCT (ch))
2269 || (is_space && ISSPACE (ch))
2270 || (is_upper && ISUPPER (ch))
2271 || (is_xdigit && ISXDIGIT (ch)))
2273 if ( translate && (is_upper || is_lower)
2274 && (ISUPPER (ch) || ISLOWER (ch)))
2277 had_char_class = true;
2278 #endif /* libc || wctype.h */
2287 had_char_class = false;
2292 had_char_class = false;
2297 /* Discard any (non)matching list bytes that are all 0 at the
2298 end of the map. Decrease the map-length byte too. */
2299 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2307 if (syntax & RE_NO_BK_PARENS)
2314 if (syntax & RE_NO_BK_PARENS)
2321 if (syntax & RE_NEWLINE_ALT)
2328 if (syntax & RE_NO_BK_VBAR)
2335 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2336 goto handle_interval;
2342 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2344 /* Do not translate the character after the \, so that we can
2345 distinguish, e.g., \B from \b, even if we normally would
2346 translate, e.g., B to b. */
2352 if (syntax & RE_NO_BK_PARENS)
2353 goto normal_backslash;
2359 if (COMPILE_STACK_FULL)
2361 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2362 compile_stack_elt_t);
2363 if (compile_stack.stack == NULL) return REG_ESPACE;
2365 compile_stack.size <<= 1;
2368 /* These are the values to restore when we hit end of this
2369 group. They are all relative offsets, so that if the
2370 whole pattern moves because of realloc, they will still
2372 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2373 COMPILE_STACK_TOP.fixup_alt_jump
2374 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2375 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2376 COMPILE_STACK_TOP.regnum = regnum;
2378 /* We will eventually replace the 0 with the number of
2379 groups inner to this one. But do not push a
2380 start_memory for groups beyond the last one we can
2381 represent in the compiled pattern. */
2382 if (regnum <= MAX_REGNUM)
2384 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2385 BUF_PUSH_3 (start_memory, regnum, 0);
2388 compile_stack.avail++;
2393 /* If we've reached MAX_REGNUM groups, then this open
2394 won't actually generate any code, so we'll have to
2395 clear pending_exact explicitly. */
2401 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2403 if (COMPILE_STACK_EMPTY)
2404 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2405 goto normal_backslash;
2407 FREE_STACK_RETURN (REG_ERPAREN);
2411 { /* Push a dummy failure point at the end of the
2412 alternative for a possible future
2413 `pop_failure_jump' to pop. See comments at
2414 `push_dummy_failure' in `re_match_2'. */
2415 BUF_PUSH (push_dummy_failure);
2417 /* We allocated space for this jump when we assigned
2418 to `fixup_alt_jump', in the `handle_alt' case below. */
2419 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2422 /* See similar code for backslashed left paren above. */
2423 if (COMPILE_STACK_EMPTY)
2424 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2427 FREE_STACK_RETURN (REG_ERPAREN);
2429 /* Since we just checked for an empty stack above, this
2430 ``can't happen''. */
2431 assert (compile_stack.avail != 0);
2433 /* We don't just want to restore into `regnum', because
2434 later groups should continue to be numbered higher,
2435 as in `(ab)c(de)' -- the second group is #2. */
2436 regnum_t this_group_regnum;
2438 compile_stack.avail--;
2439 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2441 = COMPILE_STACK_TOP.fixup_alt_jump
2442 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2444 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2445 this_group_regnum = COMPILE_STACK_TOP.regnum;
2446 /* If we've reached MAX_REGNUM groups, then this open
2447 won't actually generate any code, so we'll have to
2448 clear pending_exact explicitly. */
2451 /* We're at the end of the group, so now we know how many
2452 groups were inside this one. */
2453 if (this_group_regnum <= MAX_REGNUM)
2455 unsigned char *inner_group_loc
2456 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2458 *inner_group_loc = regnum - this_group_regnum;
2459 BUF_PUSH_3 (stop_memory, this_group_regnum,
2460 regnum - this_group_regnum);
2466 case '|': /* `\|'. */
2467 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2468 goto normal_backslash;
2470 if (syntax & RE_LIMITED_OPS)
2473 /* Insert before the previous alternative a jump which
2474 jumps to this alternative if the former fails. */
2475 GET_BUFFER_SPACE (3);
2476 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2480 /* The alternative before this one has a jump after it
2481 which gets executed if it gets matched. Adjust that
2482 jump so it will jump to this alternative's analogous
2483 jump (put in below, which in turn will jump to the next
2484 (if any) alternative's such jump, etc.). The last such
2485 jump jumps to the correct final destination. A picture:
2491 If we are at `b', then fixup_alt_jump right now points to a
2492 three-byte space after `a'. We'll put in the jump, set
2493 fixup_alt_jump to right after `b', and leave behind three
2494 bytes which we'll fill in when we get to after `c'. */
2497 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2499 /* Mark and leave space for a jump after this alternative,
2500 to be filled in later either by next alternative or
2501 when know we're at the end of a series of alternatives. */
2503 GET_BUFFER_SPACE (3);
2512 /* If \{ is a literal. */
2513 if (!(syntax & RE_INTERVALS)
2514 /* If we're at `\{' and it's not the open-interval
2516 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2517 || (p - 2 == pattern && p == pend))
2518 goto normal_backslash;
2522 /* If got here, then the syntax allows intervals. */
2524 /* At least (most) this many matches must be made. */
2525 int lower_bound = -1, upper_bound = -1;
2527 beg_interval = p - 1;
2531 if (syntax & RE_NO_BK_BRACES)
2532 goto unfetch_interval;
2534 FREE_STACK_RETURN (REG_EBRACE);
2537 GET_UNSIGNED_NUMBER (lower_bound);
2541 GET_UNSIGNED_NUMBER (upper_bound);
2542 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2545 /* Interval such as `{1}' => match exactly once. */
2546 upper_bound = lower_bound;
2548 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2549 || lower_bound > upper_bound)
2551 if (syntax & RE_NO_BK_BRACES)
2552 goto unfetch_interval;
2554 FREE_STACK_RETURN (REG_BADBR);
2557 if (!(syntax & RE_NO_BK_BRACES))
2559 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2566 if (syntax & RE_NO_BK_BRACES)
2567 goto unfetch_interval;
2569 FREE_STACK_RETURN (REG_BADBR);
2572 /* We just parsed a valid interval. */
2574 /* If it's invalid to have no preceding re. */
2577 if (syntax & RE_CONTEXT_INVALID_OPS)
2578 FREE_STACK_RETURN (REG_BADRPT);
2579 else if (syntax & RE_CONTEXT_INDEP_OPS)
2582 goto unfetch_interval;
2585 /* If the upper bound is zero, don't want to succeed at
2586 all; jump from `laststart' to `b + 3', which will be
2587 the end of the buffer after we insert the jump. */
2588 if (upper_bound == 0)
2590 GET_BUFFER_SPACE (3);
2591 INSERT_JUMP (jump, laststart, b + 3);
2595 /* Otherwise, we have a nontrivial interval. When
2596 we're all done, the pattern will look like:
2597 set_number_at <jump count> <upper bound>
2598 set_number_at <succeed_n count> <lower bound>
2599 succeed_n <after jump addr> <succeed_n count>
2601 jump_n <succeed_n addr> <jump count>
2602 (The upper bound and `jump_n' are omitted if
2603 `upper_bound' is 1, though.) */
2605 { /* If the upper bound is > 1, we need to insert
2606 more at the end of the loop. */
2607 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2609 GET_BUFFER_SPACE (nbytes);
2611 /* Initialize lower bound of the `succeed_n', even
2612 though it will be set during matching by its
2613 attendant `set_number_at' (inserted next),
2614 because `re_compile_fastmap' needs to know.
2615 Jump to the `jump_n' we might insert below. */
2616 INSERT_JUMP2 (succeed_n, laststart,
2617 b + 5 + (upper_bound > 1) * 5,
2621 /* Code to initialize the lower bound. Insert
2622 before the `succeed_n'. The `5' is the last two
2623 bytes of this `set_number_at', plus 3 bytes of
2624 the following `succeed_n'. */
2625 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2628 if (upper_bound > 1)
2629 { /* More than one repetition is allowed, so
2630 append a backward jump to the `succeed_n'
2631 that starts this interval.
2633 When we've reached this during matching,
2634 we'll have matched the interval once, so
2635 jump back only `upper_bound - 1' times. */
2636 STORE_JUMP2 (jump_n, b, laststart + 5,
2640 /* The location we want to set is the second
2641 parameter of the `jump_n'; that is `b-2' as
2642 an absolute address. `laststart' will be
2643 the `set_number_at' we're about to insert;
2644 `laststart+3' the number to set, the source
2645 for the relative address. But we are
2646 inserting into the middle of the pattern --
2647 so everything is getting moved up by 5.
2648 Conclusion: (b - 2) - (laststart + 3) + 5,
2649 i.e., b - laststart.
2651 We insert this at the beginning of the loop
2652 so that if we fail during matching, we'll
2653 reinitialize the bounds. */
2654 insert_op2 (set_number_at, laststart, b - laststart,
2655 upper_bound - 1, b);
2660 beg_interval = NULL;
2665 /* If an invalid interval, match the characters as literals. */
2666 assert (beg_interval);
2668 beg_interval = NULL;
2670 /* normal_char and normal_backslash need `c'. */
2673 if (!(syntax & RE_NO_BK_BRACES))
2675 if (p > pattern && p[-1] == '\\')
2676 goto normal_backslash;
2681 /* There is no way to specify the before_dot and after_dot
2682 operators. rms says this is ok. --karl */
2690 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2696 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2702 if (re_syntax_options & RE_NO_GNU_OPS)
2705 BUF_PUSH (wordchar);
2710 if (re_syntax_options & RE_NO_GNU_OPS)
2713 BUF_PUSH (notwordchar);
2718 if (re_syntax_options & RE_NO_GNU_OPS)
2724 if (re_syntax_options & RE_NO_GNU_OPS)
2730 if (re_syntax_options & RE_NO_GNU_OPS)
2732 BUF_PUSH (wordbound);
2736 if (re_syntax_options & RE_NO_GNU_OPS)
2738 BUF_PUSH (notwordbound);
2742 if (re_syntax_options & RE_NO_GNU_OPS)
2748 if (re_syntax_options & RE_NO_GNU_OPS)
2753 case '1': case '2': case '3': case '4': case '5':
2754 case '6': case '7': case '8': case '9':
2755 if (syntax & RE_NO_BK_REFS)
2761 FREE_STACK_RETURN (REG_ESUBREG);
2763 /* Can't back reference to a subexpression if inside of it. */
2764 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2768 BUF_PUSH_2 (duplicate, c1);
2774 if (syntax & RE_BK_PLUS_QM)
2777 goto normal_backslash;
2781 /* You might think it would be useful for \ to mean
2782 not to translate; but if we don't translate it
2783 it will never match anything. */
2791 /* Expects the character in `c'. */
2793 /* If no exactn currently being built. */
2796 /* If last exactn not at current position. */
2797 || pending_exact + *pending_exact + 1 != b
2799 /* We have only one byte following the exactn for the count. */
2800 || *pending_exact == (1 << BYTEWIDTH) - 1
2802 /* If followed by a repetition operator. */
2803 || *p == '*' || *p == '^'
2804 || ((syntax & RE_BK_PLUS_QM)
2805 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2806 : (*p == '+' || *p == '?'))
2807 || ((syntax & RE_INTERVALS)
2808 && ((syntax & RE_NO_BK_BRACES)
2810 : (p[0] == '\\' && p[1] == '{'))))
2812 /* Start building a new exactn. */
2816 BUF_PUSH_2 (exactn, 0);
2817 pending_exact = b - 1;
2824 } /* while p != pend */
2827 /* Through the pattern now. */
2830 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2832 if (!COMPILE_STACK_EMPTY)
2833 FREE_STACK_RETURN (REG_EPAREN);
2835 /* If we don't want backtracking, force success
2836 the first time we reach the end of the compiled pattern. */
2837 if (syntax & RE_NO_POSIX_BACKTRACKING)
2840 free (compile_stack.stack);
2842 /* We have succeeded; set the length of the buffer. */
2843 bufp->used = b - bufp->buffer;
2848 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2849 print_compiled_pattern (bufp);
2853 #ifndef MATCH_MAY_ALLOCATE
2854 /* Initialize the failure stack to the largest possible stack. This
2855 isn't necessary unless we're trying to avoid calling alloca in
2856 the search and match routines. */
2858 int num_regs = bufp->re_nsub + 1;
2860 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2861 is strictly greater than re_max_failures, the largest possible stack
2862 is 2 * re_max_failures failure points. */
2863 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2865 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2868 if (! fail_stack.stack)
2870 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2871 * sizeof (fail_stack_elt_t));
2874 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2876 * sizeof (fail_stack_elt_t)));
2877 #else /* not emacs */
2878 if (! fail_stack.stack)
2880 = (fail_stack_elt_t *) malloc (fail_stack.size
2881 * sizeof (fail_stack_elt_t));
2884 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2886 * sizeof (fail_stack_elt_t)));
2887 #endif /* not emacs */
2890 regex_grow_registers (num_regs);
2892 #endif /* not MATCH_MAY_ALLOCATE */
2895 } /* regex_compile */
2897 /* Subroutines for `regex_compile'. */
2899 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2902 store_op1 (op, loc, arg)
2907 *loc = (unsigned char) op;
2908 STORE_NUMBER (loc + 1, arg);
2912 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2915 store_op2 (op, loc, arg1, arg2)
2920 *loc = (unsigned char) op;
2921 STORE_NUMBER (loc + 1, arg1);
2922 STORE_NUMBER (loc + 3, arg2);
2926 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2927 for OP followed by two-byte integer parameter ARG. */
2930 insert_op1 (op, loc, arg, end)
2936 register unsigned char *pfrom = end;
2937 register unsigned char *pto = end + 3;
2939 while (pfrom != loc)
2942 store_op1 (op, loc, arg);
2946 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2949 insert_op2 (op, loc, arg1, arg2, end)
2955 register unsigned char *pfrom = end;
2956 register unsigned char *pto = end + 5;
2958 while (pfrom != loc)
2961 store_op2 (op, loc, arg1, arg2);
2965 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2966 after an alternative or a begin-subexpression. We assume there is at
2967 least one character before the ^. */
2970 at_begline_loc_p (pattern, p, syntax)
2971 const char *pattern, *p;
2972 reg_syntax_t syntax;
2974 const char *prev = p - 2;
2975 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2978 /* After a subexpression? */
2979 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2980 /* After an alternative? */
2981 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2985 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2986 at least one character after the $, i.e., `P < PEND'. */
2989 at_endline_loc_p (p, pend, syntax)
2990 const char *p, *pend;
2991 reg_syntax_t syntax;
2993 const char *next = p;
2994 boolean next_backslash = *next == '\\';
2995 const char *next_next = p + 1 < pend ? p + 1 : 0;
2998 /* Before a subexpression? */
2999 (syntax & RE_NO_BK_PARENS ? *next == ')'
3000 : next_backslash && next_next && *next_next == ')')
3001 /* Before an alternative? */
3002 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3003 : next_backslash && next_next && *next_next == '|');
3007 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3008 false if it's not. */
3011 group_in_compile_stack (compile_stack, regnum)
3012 compile_stack_type compile_stack;
3017 for (this_element = compile_stack.avail - 1;
3020 if (compile_stack.stack[this_element].regnum == regnum)
3027 /* Read the ending character of a range (in a bracket expression) from the
3028 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3029 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3030 Then we set the translation of all bits between the starting and
3031 ending characters (inclusive) in the compiled pattern B.
3033 Return an error code.
3035 We use these short variable names so we can use the same macros as
3036 `regex_compile' itself. */
3038 static reg_errcode_t
3039 compile_range (p_ptr, pend, translate, syntax, b)
3040 const char **p_ptr, *pend;
3041 RE_TRANSLATE_TYPE translate;
3042 reg_syntax_t syntax;
3047 const char *p = *p_ptr;
3048 unsigned int range_start, range_end;
3053 /* Even though the pattern is a signed `char *', we need to fetch
3054 with unsigned char *'s; if the high bit of the pattern character
3055 is set, the range endpoints will be negative if we fetch using a
3058 We also want to fetch the endpoints without translating them; the
3059 appropriate translation is done in the bit-setting loop below. */
3060 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3061 range_start = ((const unsigned char *) p)[-2];
3062 range_end = ((const unsigned char *) p)[0];
3064 /* Have to increment the pointer into the pattern string, so the
3065 caller isn't still at the ending character. */
3068 /* If the start is after the end, the range is empty. */
3069 if (range_start > range_end)
3070 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3072 /* Here we see why `this_char' has to be larger than an `unsigned
3073 char' -- the range is inclusive, so if `range_end' == 0xff
3074 (assuming 8-bit characters), we would otherwise go into an infinite
3075 loop, since all characters <= 0xff. */
3076 for (this_char = range_start; this_char <= range_end; this_char++)
3078 SET_LIST_BIT (TRANSLATE (this_char));
3084 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3085 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3086 characters can start a string that matches the pattern. This fastmap
3087 is used by re_search to skip quickly over impossible starting points.
3089 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3090 area as BUFP->fastmap.
3092 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3095 Returns 0 if we succeed, -2 if an internal error. */
3098 re_compile_fastmap (bufp)
3099 struct re_pattern_buffer *bufp;
3102 #ifdef MATCH_MAY_ALLOCATE
3103 fail_stack_type fail_stack;
3105 #ifndef REGEX_MALLOC
3108 /* We don't push any register information onto the failure stack. */
3109 unsigned num_regs = 0;
3111 register char *fastmap = bufp->fastmap;
3112 unsigned char *pattern = bufp->buffer;
3113 unsigned char *p = pattern;
3114 register unsigned char *pend = pattern + bufp->used;
3117 /* This holds the pointer to the failure stack, when
3118 it is allocated relocatably. */
3119 fail_stack_elt_t *failure_stack_ptr;
3122 /* Assume that each path through the pattern can be null until
3123 proven otherwise. We set this false at the bottom of switch
3124 statement, to which we get only if a particular path doesn't
3125 match the empty string. */
3126 boolean path_can_be_null = true;
3128 /* We aren't doing a `succeed_n' to begin with. */
3129 boolean succeed_n_p = false;
3131 assert (fastmap != NULL && p != NULL);
3134 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3135 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3136 bufp->can_be_null = 0;
3140 if (p == pend || *p == succeed)
3142 /* We have reached the (effective) end of pattern. */
3143 if (!FAIL_STACK_EMPTY ())
3145 bufp->can_be_null |= path_can_be_null;
3147 /* Reset for next path. */
3148 path_can_be_null = true;
3150 p = fail_stack.stack[--fail_stack.avail].pointer;
3158 /* We should never be about to go beyond the end of the pattern. */
3161 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3164 /* I guess the idea here is to simply not bother with a fastmap
3165 if a backreference is used, since it's too hard to figure out
3166 the fastmap for the corresponding group. Setting
3167 `can_be_null' stops `re_search_2' from using the fastmap, so
3168 that is all we do. */
3170 bufp->can_be_null = 1;
3174 /* Following are the cases which match a character. These end
3183 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3184 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3190 /* Chars beyond end of map must be allowed. */
3191 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3194 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3195 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3201 for (j = 0; j < (1 << BYTEWIDTH); j++)
3202 if (SYNTAX (j) == Sword)
3208 for (j = 0; j < (1 << BYTEWIDTH); j++)
3209 if (SYNTAX (j) != Sword)
3216 int fastmap_newline = fastmap['\n'];
3218 /* `.' matches anything ... */
3219 for (j = 0; j < (1 << BYTEWIDTH); j++)
3222 /* ... except perhaps newline. */
3223 if (!(bufp->syntax & RE_DOT_NEWLINE))
3224 fastmap['\n'] = fastmap_newline;
3226 /* Return if we have already set `can_be_null'; if we have,
3227 then the fastmap is irrelevant. Something's wrong here. */
3228 else if (bufp->can_be_null)
3231 /* Otherwise, have to check alternative paths. */
3238 for (j = 0; j < (1 << BYTEWIDTH); j++)
3239 if (SYNTAX (j) == (enum syntaxcode) k)
3246 for (j = 0; j < (1 << BYTEWIDTH); j++)
3247 if (SYNTAX (j) != (enum syntaxcode) k)
3252 /* All cases after this match the empty string. These end with
3272 case push_dummy_failure:
3277 case pop_failure_jump:
3278 case maybe_pop_jump:
3281 case dummy_failure_jump:
3282 EXTRACT_NUMBER_AND_INCR (j, p);
3287 /* Jump backward implies we just went through the body of a
3288 loop and matched nothing. Opcode jumped to should be
3289 `on_failure_jump' or `succeed_n'. Just treat it like an
3290 ordinary jump. For a * loop, it has pushed its failure
3291 point already; if so, discard that as redundant. */
3292 if ((re_opcode_t) *p != on_failure_jump
3293 && (re_opcode_t) *p != succeed_n)
3297 EXTRACT_NUMBER_AND_INCR (j, p);
3300 /* If what's on the stack is where we are now, pop it. */
3301 if (!FAIL_STACK_EMPTY ()
3302 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3308 case on_failure_jump:
3309 case on_failure_keep_string_jump:
3310 handle_on_failure_jump:
3311 EXTRACT_NUMBER_AND_INCR (j, p);
3313 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3314 end of the pattern. We don't want to push such a point,
3315 since when we restore it above, entering the switch will
3316 increment `p' past the end of the pattern. We don't need
3317 to push such a point since we obviously won't find any more
3318 fastmap entries beyond `pend'. Such a pattern can match
3319 the null string, though. */
3322 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3324 RESET_FAIL_STACK ();
3329 bufp->can_be_null = 1;
3333 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3334 succeed_n_p = false;
3341 /* Get to the number of times to succeed. */
3344 /* Increment p past the n for when k != 0. */
3345 EXTRACT_NUMBER_AND_INCR (k, p);
3349 succeed_n_p = true; /* Spaghetti code alert. */
3350 goto handle_on_failure_jump;
3367 abort (); /* We have listed all the cases. */
3370 /* Getting here means we have found the possible starting
3371 characters for one path of the pattern -- and that the empty
3372 string does not match. We need not follow this path further.
3373 Instead, look at the next alternative (remembered on the
3374 stack), or quit if no more. The test at the top of the loop
3375 does these things. */
3376 path_can_be_null = false;
3380 /* Set `can_be_null' for the last path (also the first path, if the
3381 pattern is empty). */
3382 bufp->can_be_null |= path_can_be_null;
3385 RESET_FAIL_STACK ();
3387 } /* re_compile_fastmap */
3389 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3390 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3391 this memory for recording register information. STARTS and ENDS
3392 must be allocated using the malloc library routine, and must each
3393 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3395 If NUM_REGS == 0, then subsequent matches should allocate their own
3398 Unless this function is called, the first search or match using
3399 PATTERN_BUFFER will allocate its own register data, without
3400 freeing the old data. */
3403 re_set_registers (bufp, regs, num_regs, starts, ends)
3404 struct re_pattern_buffer *bufp;
3405 struct re_registers *regs;
3407 regoff_t *starts, *ends;
3411 bufp->regs_allocated = REGS_REALLOCATE;
3412 regs->num_regs = num_regs;
3413 regs->start = starts;
3418 bufp->regs_allocated = REGS_UNALLOCATED;
3420 regs->start = regs->end = (regoff_t *) 0;
3424 /* Searching routines. */
3426 /* Like re_search_2, below, but only one string is specified, and
3427 doesn't let you say where to stop matching. */
3430 re_search (bufp, string, size, startpos, range, regs)
3431 struct re_pattern_buffer *bufp;
3433 int size, startpos, range;
3434 struct re_registers *regs;
3436 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3441 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3442 virtual concatenation of STRING1 and STRING2, starting first at index
3443 STARTPOS, then at STARTPOS + 1, and so on.
3445 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3447 RANGE is how far to scan while trying to match. RANGE = 0 means try
3448 only at STARTPOS; in general, the last start tried is STARTPOS +
3451 In REGS, return the indices of the virtual concatenation of STRING1
3452 and STRING2 that matched the entire BUFP->buffer and its contained
3455 Do not consider matching one past the index STOP in the virtual
3456 concatenation of STRING1 and STRING2.
3458 We return either the position in the strings at which the match was
3459 found, -1 if no match, or -2 if error (such as failure
3463 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3464 struct re_pattern_buffer *bufp;
3465 const char *string1, *string2;
3469 struct re_registers *regs;
3473 register char *fastmap = bufp->fastmap;
3474 register RE_TRANSLATE_TYPE translate = bufp->translate;
3475 int total_size = size1 + size2;
3476 int endpos = startpos + range;
3478 /* Check for out-of-range STARTPOS. */
3479 if (startpos < 0 || startpos > total_size)
3482 /* Fix up RANGE if it might eventually take us outside
3483 the virtual concatenation of STRING1 and STRING2.
3484 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3486 range = 0 - startpos;
3487 else if (endpos > total_size)
3488 range = total_size - startpos;
3490 /* If the search isn't to be a backwards one, don't waste time in a
3491 search for a pattern that must be anchored. */
3492 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3501 /* In a forward search for something that starts with \=.
3502 don't keep searching past point. */
3503 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3505 range = PT - startpos;
3511 /* Update the fastmap now if not correct already. */
3512 if (fastmap && !bufp->fastmap_accurate)
3513 if (re_compile_fastmap (bufp) == -2)
3516 /* Loop through the string, looking for a place to start matching. */
3519 /* If a fastmap is supplied, skip quickly over characters that
3520 cannot be the start of a match. If the pattern can match the
3521 null string, however, we don't need to skip characters; we want
3522 the first null string. */
3523 if (fastmap && startpos < total_size && !bufp->can_be_null)
3525 if (range > 0) /* Searching forwards. */
3527 register const char *d;
3528 register int lim = 0;
3531 if (startpos < size1 && startpos + range >= size1)
3532 lim = range - (size1 - startpos);
3534 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3536 /* Written out as an if-else to avoid testing `translate'
3540 && !fastmap[(unsigned char)
3541 translate[(unsigned char) *d++]])
3544 while (range > lim && !fastmap[(unsigned char) *d++])
3547 startpos += irange - range;
3549 else /* Searching backwards. */
3551 register char c = (size1 == 0 || startpos >= size1
3552 ? string2[startpos - size1]
3553 : string1[startpos]);
3555 if (!fastmap[(unsigned char) TRANSLATE (c)])
3560 /* If can't match the null string, and that's all we have left, fail. */
3561 if (range >= 0 && startpos == total_size && fastmap
3562 && !bufp->can_be_null)
3565 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3566 startpos, regs, stop);
3567 #ifndef REGEX_MALLOC
3596 /* This converts PTR, a pointer into one of the search strings `string1'
3597 and `string2' into an offset from the beginning of that string. */
3598 #define POINTER_TO_OFFSET(ptr) \
3599 (FIRST_STRING_P (ptr) \
3600 ? ((regoff_t) ((ptr) - string1)) \
3601 : ((regoff_t) ((ptr) - string2 + size1)))
3603 /* Macros for dealing with the split strings in re_match_2. */
3605 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3607 /* Call before fetching a character with *d. This switches over to
3608 string2 if necessary. */
3609 #define PREFETCH() \
3612 /* End of string2 => fail. */ \
3613 if (dend == end_match_2) \
3615 /* End of string1 => advance to string2. */ \
3617 dend = end_match_2; \
3621 /* Test if at very beginning or at very end of the virtual concatenation
3622 of `string1' and `string2'. If only one string, it's `string2'. */
3623 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3624 #define AT_STRINGS_END(d) ((d) == end2)
3627 /* Test if D points to a character which is word-constituent. We have
3628 two special cases to check for: if past the end of string1, look at
3629 the first character in string2; and if before the beginning of
3630 string2, look at the last character in string1. */
3631 #define WORDCHAR_P(d) \
3632 (SYNTAX ((d) == end1 ? *string2 \
3633 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3636 /* Disabled due to a compiler bug -- see comment at case wordbound */
3638 /* Test if the character before D and the one at D differ with respect
3639 to being word-constituent. */
3640 #define AT_WORD_BOUNDARY(d) \
3641 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3642 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3645 /* Free everything we malloc. */
3646 #ifdef MATCH_MAY_ALLOCATE
3647 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3648 #define FREE_VARIABLES() \
3650 REGEX_FREE_STACK (fail_stack.stack); \
3651 FREE_VAR (regstart); \
3652 FREE_VAR (regend); \
3653 FREE_VAR (old_regstart); \
3654 FREE_VAR (old_regend); \
3655 FREE_VAR (best_regstart); \
3656 FREE_VAR (best_regend); \
3657 FREE_VAR (reg_info); \
3658 FREE_VAR (reg_dummy); \
3659 FREE_VAR (reg_info_dummy); \
3662 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3663 #endif /* not MATCH_MAY_ALLOCATE */
3665 /* These values must meet several constraints. They must not be valid
3666 register values; since we have a limit of 255 registers (because
3667 we use only one byte in the pattern for the register number), we can
3668 use numbers larger than 255. They must differ by 1, because of
3669 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3670 be larger than the value for the highest register, so we do not try
3671 to actually save any registers when none are active. */
3672 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3673 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3675 /* Matching routines. */
3677 #ifndef emacs /* Emacs never uses this. */
3678 /* re_match is like re_match_2 except it takes only a single string. */
3681 re_match (bufp, string, size, pos, regs)
3682 struct re_pattern_buffer *bufp;
3685 struct re_registers *regs;
3687 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3689 #ifndef REGEX_MALLOC
3696 #endif /* not emacs */
3698 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3700 register_info_type *reg_info));
3701 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3703 register_info_type *reg_info));
3704 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3706 register_info_type *reg_info));
3707 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3708 int len, char *translate));
3710 /* re_match_2 matches the compiled pattern in BUFP against the
3711 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3712 and SIZE2, respectively). We start matching at POS, and stop
3715 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3716 store offsets for the substring each group matched in REGS. See the
3717 documentation for exactly how many groups we fill.
3719 We return -1 if no match, -2 if an internal error (such as the
3720 failure stack overflowing). Otherwise, we return the length of the
3721 matched substring. */
3724 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3725 struct re_pattern_buffer *bufp;
3726 const char *string1, *string2;
3729 struct re_registers *regs;
3732 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3734 #ifndef REGEX_MALLOC
3742 /* This is a separate function so that we can force an alloca cleanup
3745 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3746 struct re_pattern_buffer *bufp;
3747 const char *string1, *string2;
3750 struct re_registers *regs;
3753 /* General temporaries. */
3757 /* Just past the end of the corresponding string. */
3758 const char *end1, *end2;
3760 /* Pointers into string1 and string2, just past the last characters in
3761 each to consider matching. */
3762 const char *end_match_1, *end_match_2;
3764 /* Where we are in the data, and the end of the current string. */
3765 const char *d, *dend;
3767 /* Where we are in the pattern, and the end of the pattern. */
3768 unsigned char *p = bufp->buffer;
3769 register unsigned char *pend = p + bufp->used;
3771 /* Mark the opcode just after a start_memory, so we can test for an
3772 empty subpattern when we get to the stop_memory. */
3773 unsigned char *just_past_start_mem = 0;
3775 /* We use this to map every character in the string. */
3776 RE_TRANSLATE_TYPE translate = bufp->translate;
3778 /* Failure point stack. Each place that can handle a failure further
3779 down the line pushes a failure point on this stack. It consists of
3780 restart, regend, and reg_info for all registers corresponding to
3781 the subexpressions we're currently inside, plus the number of such
3782 registers, and, finally, two char *'s. The first char * is where
3783 to resume scanning the pattern; the second one is where to resume
3784 scanning the strings. If the latter is zero, the failure point is
3785 a ``dummy''; if a failure happens and the failure point is a dummy,
3786 it gets discarded and the next next one is tried. */
3787 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3788 fail_stack_type fail_stack;
3791 static unsigned failure_id = 0;
3792 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3796 /* This holds the pointer to the failure stack, when
3797 it is allocated relocatably. */
3798 fail_stack_elt_t *failure_stack_ptr;
3801 /* We fill all the registers internally, independent of what we
3802 return, for use in backreferences. The number here includes
3803 an element for register zero. */
3804 size_t num_regs = bufp->re_nsub + 1;
3806 /* The currently active registers. */
3807 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3808 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3810 /* Information on the contents of registers. These are pointers into
3811 the input strings; they record just what was matched (on this
3812 attempt) by a subexpression part of the pattern, that is, the
3813 regnum-th regstart pointer points to where in the pattern we began
3814 matching and the regnum-th regend points to right after where we
3815 stopped matching the regnum-th subexpression. (The zeroth register
3816 keeps track of what the whole pattern matches.) */
3817 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3818 const char **regstart, **regend;
3821 /* If a group that's operated upon by a repetition operator fails to
3822 match anything, then the register for its start will need to be
3823 restored because it will have been set to wherever in the string we
3824 are when we last see its open-group operator. Similarly for a
3826 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3827 const char **old_regstart, **old_regend;
3830 /* The is_active field of reg_info helps us keep track of which (possibly
3831 nested) subexpressions we are currently in. The matched_something
3832 field of reg_info[reg_num] helps us tell whether or not we have
3833 matched any of the pattern so far this time through the reg_num-th
3834 subexpression. These two fields get reset each time through any
3835 loop their register is in. */
3836 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3837 register_info_type *reg_info;
3840 /* The following record the register info as found in the above
3841 variables when we find a match better than any we've seen before.
3842 This happens as we backtrack through the failure points, which in
3843 turn happens only if we have not yet matched the entire string. */
3844 unsigned best_regs_set = false;
3845 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3846 const char **best_regstart, **best_regend;
3849 /* Logically, this is `best_regend[0]'. But we don't want to have to
3850 allocate space for that if we're not allocating space for anything
3851 else (see below). Also, we never need info about register 0 for
3852 any of the other register vectors, and it seems rather a kludge to
3853 treat `best_regend' differently than the rest. So we keep track of
3854 the end of the best match so far in a separate variable. We
3855 initialize this to NULL so that when we backtrack the first time
3856 and need to test it, it's not garbage. */
3857 const char *match_end = NULL;
3859 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3860 int set_regs_matched_done = 0;
3862 /* Used when we pop values we don't care about. */
3863 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3864 const char **reg_dummy;
3865 register_info_type *reg_info_dummy;
3869 /* Counts the total number of registers pushed. */
3870 unsigned num_regs_pushed = 0;
3873 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3877 #ifdef MATCH_MAY_ALLOCATE
3878 /* Do not bother to initialize all the register variables if there are
3879 no groups in the pattern, as it takes a fair amount of time. If
3880 there are groups, we include space for register 0 (the whole
3881 pattern), even though we never use it, since it simplifies the
3882 array indexing. We should fix this. */
3885 regstart = REGEX_TALLOC (num_regs, const char *);
3886 regend = REGEX_TALLOC (num_regs, const char *);
3887 old_regstart = REGEX_TALLOC (num_regs, const char *);
3888 old_regend = REGEX_TALLOC (num_regs, const char *);
3889 best_regstart = REGEX_TALLOC (num_regs, const char *);
3890 best_regend = REGEX_TALLOC (num_regs, const char *);
3891 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3892 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3893 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3895 if (!(regstart && regend && old_regstart && old_regend && reg_info
3896 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3904 /* We must initialize all our variables to NULL, so that
3905 `FREE_VARIABLES' doesn't try to free them. */
3906 regstart = regend = old_regstart = old_regend = best_regstart
3907 = best_regend = reg_dummy = NULL;
3908 reg_info = reg_info_dummy = (register_info_type *) NULL;
3910 #endif /* MATCH_MAY_ALLOCATE */
3912 /* The starting position is bogus. */
3913 if (pos < 0 || pos > size1 + size2)
3919 /* Initialize subexpression text positions to -1 to mark ones that no
3920 start_memory/stop_memory has been seen for. Also initialize the
3921 register information struct. */
3922 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3924 regstart[mcnt] = regend[mcnt]
3925 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3927 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3928 IS_ACTIVE (reg_info[mcnt]) = 0;
3929 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3930 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3933 /* We move `string1' into `string2' if the latter's empty -- but not if
3934 `string1' is null. */
3935 if (size2 == 0 && string1 != NULL)
3942 end1 = string1 + size1;
3943 end2 = string2 + size2;
3945 /* Compute where to stop matching, within the two strings. */
3948 end_match_1 = string1 + stop;
3949 end_match_2 = string2;
3954 end_match_2 = string2 + stop - size1;
3957 /* `p' scans through the pattern as `d' scans through the data.
3958 `dend' is the end of the input string that `d' points within. `d'
3959 is advanced into the following input string whenever necessary, but
3960 this happens before fetching; therefore, at the beginning of the
3961 loop, `d' can be pointing at the end of a string, but it cannot
3963 if (size1 > 0 && pos <= size1)
3970 d = string2 + pos - size1;
3974 DEBUG_PRINT1 ("The compiled pattern is:\n");
3975 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3976 DEBUG_PRINT1 ("The string to match is: `");
3977 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3978 DEBUG_PRINT1 ("'\n");
3980 /* This loops over pattern commands. It exits by returning from the
3981 function if the match is complete, or it drops through if the match
3982 fails at this starting point in the input data. */
3986 DEBUG_PRINT2 ("\n%p: ", p);
3988 DEBUG_PRINT2 ("\n0x%x: ", p);
3992 { /* End of pattern means we might have succeeded. */
3993 DEBUG_PRINT1 ("end of pattern ... ");
3995 /* If we haven't matched the entire string, and we want the
3996 longest match, try backtracking. */
3997 if (d != end_match_2)
3999 /* 1 if this match ends in the same string (string1 or string2)
4000 as the best previous match. */
4001 boolean same_str_p = (FIRST_STRING_P (match_end)
4002 == MATCHING_IN_FIRST_STRING);
4003 /* 1 if this match is the best seen so far. */
4004 boolean best_match_p;
4006 /* AIX compiler got confused when this was combined
4007 with the previous declaration. */
4009 best_match_p = d > match_end;
4011 best_match_p = !MATCHING_IN_FIRST_STRING;
4013 DEBUG_PRINT1 ("backtracking.\n");
4015 if (!FAIL_STACK_EMPTY ())
4016 { /* More failure points to try. */
4018 /* If exceeds best match so far, save it. */
4019 if (!best_regs_set || best_match_p)
4021 best_regs_set = true;
4024 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4026 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4028 best_regstart[mcnt] = regstart[mcnt];
4029 best_regend[mcnt] = regend[mcnt];
4035 /* If no failure points, don't restore garbage. And if
4036 last match is real best match, don't restore second
4038 else if (best_regs_set && !best_match_p)
4041 /* Restore best match. It may happen that `dend ==
4042 end_match_1' while the restored d is in string2.
4043 For example, the pattern `x.*y.*z' against the
4044 strings `x-' and `y-z-', if the two strings are
4045 not consecutive in memory. */
4046 DEBUG_PRINT1 ("Restoring best registers.\n");
4049 dend = ((d >= string1 && d <= end1)
4050 ? end_match_1 : end_match_2);
4052 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4054 regstart[mcnt] = best_regstart[mcnt];
4055 regend[mcnt] = best_regend[mcnt];
4058 } /* d != end_match_2 */
4061 DEBUG_PRINT1 ("Accepting match.\n");
4063 /* If caller wants register contents data back, do it. */
4064 if (regs && !bufp->no_sub)
4066 /* Have the register data arrays been allocated? */
4067 if (bufp->regs_allocated == REGS_UNALLOCATED)
4068 { /* No. So allocate them with malloc. We need one
4069 extra element beyond `num_regs' for the `-1' marker
4071 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4072 regs->start = TALLOC (regs->num_regs, regoff_t);
4073 regs->end = TALLOC (regs->num_regs, regoff_t);
4074 if (regs->start == NULL || regs->end == NULL)
4079 bufp->regs_allocated = REGS_REALLOCATE;
4081 else if (bufp->regs_allocated == REGS_REALLOCATE)
4082 { /* Yes. If we need more elements than were already
4083 allocated, reallocate them. If we need fewer, just
4085 if (regs->num_regs < num_regs + 1)
4087 regs->num_regs = num_regs + 1;
4088 RETALLOC (regs->start, regs->num_regs, regoff_t);
4089 RETALLOC (regs->end, regs->num_regs, regoff_t);
4090 if (regs->start == NULL || regs->end == NULL)
4099 /* These braces fend off a "empty body in an else-statement"
4100 warning under GCC when assert expands to nothing. */
4101 assert (bufp->regs_allocated == REGS_FIXED);
4104 /* Convert the pointer data in `regstart' and `regend' to
4105 indices. Register zero has to be set differently,
4106 since we haven't kept track of any info for it. */
4107 if (regs->num_regs > 0)
4109 regs->start[0] = pos;
4110 regs->end[0] = (MATCHING_IN_FIRST_STRING
4111 ? ((regoff_t) (d - string1))
4112 : ((regoff_t) (d - string2 + size1)));
4115 /* Go through the first `min (num_regs, regs->num_regs)'
4116 registers, since that is all we initialized. */
4117 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4120 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4121 regs->start[mcnt] = regs->end[mcnt] = -1;
4125 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4127 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4131 /* If the regs structure we return has more elements than
4132 were in the pattern, set the extra elements to -1. If
4133 we (re)allocated the registers, this is the case,
4134 because we always allocate enough to have at least one
4136 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4137 regs->start[mcnt] = regs->end[mcnt] = -1;
4138 } /* regs && !bufp->no_sub */
4140 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4141 nfailure_points_pushed, nfailure_points_popped,
4142 nfailure_points_pushed - nfailure_points_popped);
4143 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4145 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4149 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4155 /* Otherwise match next pattern command. */
4156 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4158 /* Ignore these. Used to ignore the n of succeed_n's which
4159 currently have n == 0. */
4161 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4165 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4168 /* Match the next n pattern characters exactly. The following
4169 byte in the pattern defines n, and the n bytes after that
4170 are the characters to match. */
4173 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4175 /* This is written out as an if-else so we don't waste time
4176 testing `translate' inside the loop. */
4182 if ((unsigned char) translate[(unsigned char) *d++]
4183 != (unsigned char) *p++)
4193 if (*d++ != (char) *p++) goto fail;
4197 SET_REGS_MATCHED ();
4201 /* Match any character except possibly a newline or a null. */
4203 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4207 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4208 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4211 SET_REGS_MATCHED ();
4212 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4220 register unsigned char c;
4221 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4223 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4226 c = TRANSLATE (*d); /* The character to match. */
4228 /* Cast to `unsigned' instead of `unsigned char' in case the
4229 bit list is a full 32 bytes long. */
4230 if (c < (unsigned) (*p * BYTEWIDTH)
4231 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4236 if (!not) goto fail;
4238 SET_REGS_MATCHED ();
4244 /* The beginning of a group is represented by start_memory.
4245 The arguments are the register number in the next byte, and the
4246 number of groups inner to this one in the next. The text
4247 matched within the group is recorded (in the internal
4248 registers data structure) under the register number. */
4250 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4252 /* Find out if this group can match the empty string. */
4253 p1 = p; /* To send to group_match_null_string_p. */
4255 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4256 REG_MATCH_NULL_STRING_P (reg_info[*p])
4257 = group_match_null_string_p (&p1, pend, reg_info);
4259 /* Save the position in the string where we were the last time
4260 we were at this open-group operator in case the group is
4261 operated upon by a repetition operator, e.g., with `(a*)*b'
4262 against `ab'; then we want to ignore where we are now in
4263 the string in case this attempt to match fails. */
4264 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4265 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4267 DEBUG_PRINT2 (" old_regstart: %d\n",
4268 POINTER_TO_OFFSET (old_regstart[*p]));
4271 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4273 IS_ACTIVE (reg_info[*p]) = 1;
4274 MATCHED_SOMETHING (reg_info[*p]) = 0;
4276 /* Clear this whenever we change the register activity status. */
4277 set_regs_matched_done = 0;
4279 /* This is the new highest active register. */
4280 highest_active_reg = *p;
4282 /* If nothing was active before, this is the new lowest active
4284 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4285 lowest_active_reg = *p;
4287 /* Move past the register number and inner group count. */
4289 just_past_start_mem = p;
4294 /* The stop_memory opcode represents the end of a group. Its
4295 arguments are the same as start_memory's: the register
4296 number, and the number of inner groups. */
4298 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4300 /* We need to save the string position the last time we were at
4301 this close-group operator in case the group is operated
4302 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4303 against `aba'; then we want to ignore where we are now in
4304 the string in case this attempt to match fails. */
4305 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4306 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4308 DEBUG_PRINT2 (" old_regend: %d\n",
4309 POINTER_TO_OFFSET (old_regend[*p]));
4312 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4314 /* This register isn't active anymore. */
4315 IS_ACTIVE (reg_info[*p]) = 0;
4317 /* Clear this whenever we change the register activity status. */
4318 set_regs_matched_done = 0;
4320 /* If this was the only register active, nothing is active
4322 if (lowest_active_reg == highest_active_reg)
4324 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4325 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4328 { /* We must scan for the new highest active register, since
4329 it isn't necessarily one less than now: consider
4330 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4331 new highest active register is 1. */
4332 unsigned char r = *p - 1;
4333 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4336 /* If we end up at register zero, that means that we saved
4337 the registers as the result of an `on_failure_jump', not
4338 a `start_memory', and we jumped to past the innermost
4339 `stop_memory'. For example, in ((.)*) we save
4340 registers 1 and 2 as a result of the *, but when we pop
4341 back to the second ), we are at the stop_memory 1.
4342 Thus, nothing is active. */
4345 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4346 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4349 highest_active_reg = r;
4352 /* If just failed to match something this time around with a
4353 group that's operated on by a repetition operator, try to
4354 force exit from the ``loop'', and restore the register
4355 information for this group that we had before trying this
4357 if ((!MATCHED_SOMETHING (reg_info[*p])
4358 || just_past_start_mem == p - 1)
4361 boolean is_a_jump_n = false;
4365 switch ((re_opcode_t) *p1++)
4369 case pop_failure_jump:
4370 case maybe_pop_jump:
4372 case dummy_failure_jump:
4373 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4383 /* If the next operation is a jump backwards in the pattern
4384 to an on_failure_jump right before the start_memory
4385 corresponding to this stop_memory, exit from the loop
4386 by forcing a failure after pushing on the stack the
4387 on_failure_jump's jump in the pattern, and d. */
4388 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4389 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4391 /* If this group ever matched anything, then restore
4392 what its registers were before trying this last
4393 failed match, e.g., with `(a*)*b' against `ab' for
4394 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4395 against `aba' for regend[3].
4397 Also restore the registers for inner groups for,
4398 e.g., `((a*)(b*))*' against `aba' (register 3 would
4399 otherwise get trashed). */
4401 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4405 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4407 /* Restore this and inner groups' (if any) registers. */
4408 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4411 regstart[r] = old_regstart[r];
4413 /* xx why this test? */
4414 if (old_regend[r] >= regstart[r])
4415 regend[r] = old_regend[r];
4419 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4420 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4426 /* Move past the register number and the inner group count. */
4431 /* \<digit> has been turned into a `duplicate' command which is
4432 followed by the numeric value of <digit> as the register number. */
4435 register const char *d2, *dend2;
4436 int regno = *p++; /* Get which register to match against. */
4437 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4439 /* Can't back reference a group which we've never matched. */
4440 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4443 /* Where in input to try to start matching. */
4444 d2 = regstart[regno];
4446 /* Where to stop matching; if both the place to start and
4447 the place to stop matching are in the same string, then
4448 set to the place to stop, otherwise, for now have to use
4449 the end of the first string. */
4451 dend2 = ((FIRST_STRING_P (regstart[regno])
4452 == FIRST_STRING_P (regend[regno]))
4453 ? regend[regno] : end_match_1);
4456 /* If necessary, advance to next segment in register
4460 if (dend2 == end_match_2) break;
4461 if (dend2 == regend[regno]) break;
4463 /* End of string1 => advance to string2. */
4465 dend2 = regend[regno];
4467 /* At end of register contents => success */
4468 if (d2 == dend2) break;
4470 /* If necessary, advance to next segment in data. */
4473 /* How many characters left in this segment to match. */
4476 /* Want how many consecutive characters we can match in
4477 one shot, so, if necessary, adjust the count. */
4478 if (mcnt > dend2 - d2)
4481 /* Compare that many; failure if mismatch, else move
4484 ? bcmp_translate (d, d2, mcnt, translate)
4485 : bcmp (d, d2, mcnt))
4487 d += mcnt, d2 += mcnt;
4489 /* Do this because we've match some characters. */
4490 SET_REGS_MATCHED ();
4496 /* begline matches the empty string at the beginning of the string
4497 (unless `not_bol' is set in `bufp'), and, if
4498 `newline_anchor' is set, after newlines. */
4500 DEBUG_PRINT1 ("EXECUTING begline.\n");
4502 if (AT_STRINGS_BEG (d))
4504 if (!bufp->not_bol) break;
4506 else if (d[-1] == '\n' && bufp->newline_anchor)
4510 /* In all other cases, we fail. */
4514 /* endline is the dual of begline. */
4516 DEBUG_PRINT1 ("EXECUTING endline.\n");
4518 if (AT_STRINGS_END (d))
4520 if (!bufp->not_eol) break;
4523 /* We have to ``prefetch'' the next character. */
4524 else if ((d == end1 ? *string2 : *d) == '\n'
4525 && bufp->newline_anchor)
4532 /* Match at the very beginning of the data. */
4534 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4535 if (AT_STRINGS_BEG (d))
4540 /* Match at the very end of the data. */
4542 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4543 if (AT_STRINGS_END (d))
4548 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4549 pushes NULL as the value for the string on the stack. Then
4550 `pop_failure_point' will keep the current value for the
4551 string, instead of restoring it. To see why, consider
4552 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4553 then the . fails against the \n. But the next thing we want
4554 to do is match the \n against the \n; if we restored the
4555 string value, we would be back at the foo.
4557 Because this is used only in specific cases, we don't need to
4558 check all the things that `on_failure_jump' does, to make
4559 sure the right things get saved on the stack. Hence we don't
4560 share its code. The only reason to push anything on the
4561 stack at all is that otherwise we would have to change
4562 `anychar's code to do something besides goto fail in this
4563 case; that seems worse than this. */
4564 case on_failure_keep_string_jump:
4565 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4567 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4569 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4571 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4574 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4578 /* Uses of on_failure_jump:
4580 Each alternative starts with an on_failure_jump that points
4581 to the beginning of the next alternative. Each alternative
4582 except the last ends with a jump that in effect jumps past
4583 the rest of the alternatives. (They really jump to the
4584 ending jump of the following alternative, because tensioning
4585 these jumps is a hassle.)
4587 Repeats start with an on_failure_jump that points past both
4588 the repetition text and either the following jump or
4589 pop_failure_jump back to this on_failure_jump. */
4590 case on_failure_jump:
4592 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4594 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4596 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4598 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4601 /* If this on_failure_jump comes right before a group (i.e.,
4602 the original * applied to a group), save the information
4603 for that group and all inner ones, so that if we fail back
4604 to this point, the group's information will be correct.
4605 For example, in \(a*\)*\1, we need the preceding group,
4606 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4608 /* We can't use `p' to check ahead because we push
4609 a failure point to `p + mcnt' after we do this. */
4612 /* We need to skip no_op's before we look for the
4613 start_memory in case this on_failure_jump is happening as
4614 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4616 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4619 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4621 /* We have a new highest active register now. This will
4622 get reset at the start_memory we are about to get to,
4623 but we will have saved all the registers relevant to
4624 this repetition op, as described above. */
4625 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4626 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4627 lowest_active_reg = *(p1 + 1);
4630 DEBUG_PRINT1 (":\n");
4631 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4635 /* A smart repeat ends with `maybe_pop_jump'.
4636 We change it to either `pop_failure_jump' or `jump'. */
4637 case maybe_pop_jump:
4638 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4639 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4641 register unsigned char *p2 = p;
4643 /* Compare the beginning of the repeat with what in the
4644 pattern follows its end. If we can establish that there
4645 is nothing that they would both match, i.e., that we
4646 would have to backtrack because of (as in, e.g., `a*a')
4647 then we can change to pop_failure_jump, because we'll
4648 never have to backtrack.
4650 This is not true in the case of alternatives: in
4651 `(a|ab)*' we do need to backtrack to the `ab' alternative
4652 (e.g., if the string was `ab'). But instead of trying to
4653 detect that here, the alternative has put on a dummy
4654 failure point which is what we will end up popping. */
4656 /* Skip over open/close-group commands.
4657 If what follows this loop is a ...+ construct,
4658 look at what begins its body, since we will have to
4659 match at least one of that. */
4663 && ((re_opcode_t) *p2 == stop_memory
4664 || (re_opcode_t) *p2 == start_memory))
4666 else if (p2 + 6 < pend
4667 && (re_opcode_t) *p2 == dummy_failure_jump)
4674 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4675 to the `maybe_finalize_jump' of this case. Examine what
4678 /* If we're at the end of the pattern, we can change. */
4681 /* Consider what happens when matching ":\(.*\)"
4682 against ":/". I don't really understand this code
4684 p[-3] = (unsigned char) pop_failure_jump;
4686 (" End of pattern: change to `pop_failure_jump'.\n");
4689 else if ((re_opcode_t) *p2 == exactn
4690 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4692 register unsigned char c
4693 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4695 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4697 p[-3] = (unsigned char) pop_failure_jump;
4698 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4702 else if ((re_opcode_t) p1[3] == charset
4703 || (re_opcode_t) p1[3] == charset_not)
4705 int not = (re_opcode_t) p1[3] == charset_not;
4707 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4708 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4711 /* `not' is equal to 1 if c would match, which means
4712 that we can't change to pop_failure_jump. */
4715 p[-3] = (unsigned char) pop_failure_jump;
4716 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4720 else if ((re_opcode_t) *p2 == charset)
4723 register unsigned char c
4724 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4728 if ((re_opcode_t) p1[3] == exactn
4729 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4730 && (p2[2 + p1[5] / BYTEWIDTH]
4731 & (1 << (p1[5] % BYTEWIDTH)))))
4733 if ((re_opcode_t) p1[3] == exactn
4734 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4735 && (p2[2 + p1[4] / BYTEWIDTH]
4736 & (1 << (p1[4] % BYTEWIDTH)))))
4739 p[-3] = (unsigned char) pop_failure_jump;
4740 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4744 else if ((re_opcode_t) p1[3] == charset_not)
4747 /* We win if the charset_not inside the loop
4748 lists every character listed in the charset after. */
4749 for (idx = 0; idx < (int) p2[1]; idx++)
4750 if (! (p2[2 + idx] == 0
4751 || (idx < (int) p1[4]
4752 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4757 p[-3] = (unsigned char) pop_failure_jump;
4758 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4761 else if ((re_opcode_t) p1[3] == charset)
4764 /* We win if the charset inside the loop
4765 has no overlap with the one after the loop. */
4767 idx < (int) p2[1] && idx < (int) p1[4];
4769 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4772 if (idx == p2[1] || idx == p1[4])
4774 p[-3] = (unsigned char) pop_failure_jump;
4775 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4780 p -= 2; /* Point at relative address again. */
4781 if ((re_opcode_t) p[-1] != pop_failure_jump)
4783 p[-1] = (unsigned char) jump;
4784 DEBUG_PRINT1 (" Match => jump.\n");
4785 goto unconditional_jump;
4787 /* Note fall through. */
4790 /* The end of a simple repeat has a pop_failure_jump back to
4791 its matching on_failure_jump, where the latter will push a
4792 failure point. The pop_failure_jump takes off failure
4793 points put on by this pop_failure_jump's matching
4794 on_failure_jump; we got through the pattern to here from the
4795 matching on_failure_jump, so didn't fail. */
4796 case pop_failure_jump:
4798 /* We need to pass separate storage for the lowest and
4799 highest registers, even though we don't care about the
4800 actual values. Otherwise, we will restore only one
4801 register from the stack, since lowest will == highest in
4802 `pop_failure_point'. */
4803 active_reg_t dummy_low_reg, dummy_high_reg;
4804 unsigned char *pdummy;
4807 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4808 POP_FAILURE_POINT (sdummy, pdummy,
4809 dummy_low_reg, dummy_high_reg,
4810 reg_dummy, reg_dummy, reg_info_dummy);
4812 /* Note fall through. */
4816 DEBUG_PRINT2 ("\n%p: ", p);
4818 DEBUG_PRINT2 ("\n0x%x: ", p);
4820 /* Note fall through. */
4822 /* Unconditionally jump (without popping any failure points). */
4824 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4825 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4826 p += mcnt; /* Do the jump. */
4828 DEBUG_PRINT2 ("(to %p).\n", p);
4830 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4835 /* We need this opcode so we can detect where alternatives end
4836 in `group_match_null_string_p' et al. */
4838 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4839 goto unconditional_jump;
4842 /* Normally, the on_failure_jump pushes a failure point, which
4843 then gets popped at pop_failure_jump. We will end up at
4844 pop_failure_jump, also, and with a pattern of, say, `a+', we
4845 are skipping over the on_failure_jump, so we have to push
4846 something meaningless for pop_failure_jump to pop. */
4847 case dummy_failure_jump:
4848 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4849 /* It doesn't matter what we push for the string here. What
4850 the code at `fail' tests is the value for the pattern. */
4851 PUSH_FAILURE_POINT (0, 0, -2);
4852 goto unconditional_jump;
4855 /* At the end of an alternative, we need to push a dummy failure
4856 point in case we are followed by a `pop_failure_jump', because
4857 we don't want the failure point for the alternative to be
4858 popped. For example, matching `(a|ab)*' against `aab'
4859 requires that we match the `ab' alternative. */
4860 case push_dummy_failure:
4861 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4862 /* See comments just above at `dummy_failure_jump' about the
4864 PUSH_FAILURE_POINT (0, 0, -2);
4867 /* Have to succeed matching what follows at least n times.
4868 After that, handle like `on_failure_jump'. */
4870 EXTRACT_NUMBER (mcnt, p + 2);
4871 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4874 /* Originally, this is how many times we HAVE to succeed. */
4879 STORE_NUMBER_AND_INCR (p, mcnt);
4881 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4883 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4889 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4891 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4893 p[2] = (unsigned char) no_op;
4894 p[3] = (unsigned char) no_op;
4900 EXTRACT_NUMBER (mcnt, p + 2);
4901 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4903 /* Originally, this is how many times we CAN jump. */
4907 STORE_NUMBER (p + 2, mcnt);
4909 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4911 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4913 goto unconditional_jump;
4915 /* If don't have to jump any more, skip over the rest of command. */
4922 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4924 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4926 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4928 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4930 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4932 STORE_NUMBER (p1, mcnt);
4937 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4938 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4939 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4940 macro and introducing temporary variables works around the bug. */
4943 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4944 if (AT_WORD_BOUNDARY (d))
4949 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4950 if (AT_WORD_BOUNDARY (d))
4956 boolean prevchar, thischar;
4958 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4959 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4962 prevchar = WORDCHAR_P (d - 1);
4963 thischar = WORDCHAR_P (d);
4964 if (prevchar != thischar)
4971 boolean prevchar, thischar;
4973 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4974 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4977 prevchar = WORDCHAR_P (d - 1);
4978 thischar = WORDCHAR_P (d);
4979 if (prevchar != thischar)
4986 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4987 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4992 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4993 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4994 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5000 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5001 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5006 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5007 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5012 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5013 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5018 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5023 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5027 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5029 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5031 SET_REGS_MATCHED ();
5035 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5037 goto matchnotsyntax;
5040 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5044 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5046 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5048 SET_REGS_MATCHED ();
5051 #else /* not emacs */
5053 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5055 if (!WORDCHAR_P (d))
5057 SET_REGS_MATCHED ();
5062 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5066 SET_REGS_MATCHED ();
5069 #endif /* not emacs */
5074 continue; /* Successfully executed one pattern command; keep going. */
5077 /* We goto here if a matching operation fails. */
5079 if (!FAIL_STACK_EMPTY ())
5080 { /* A restart point is known. Restore to that state. */
5081 DEBUG_PRINT1 ("\nFAIL:\n");
5082 POP_FAILURE_POINT (d, p,
5083 lowest_active_reg, highest_active_reg,
5084 regstart, regend, reg_info);
5086 /* If this failure point is a dummy, try the next one. */
5090 /* If we failed to the end of the pattern, don't examine *p. */
5094 boolean is_a_jump_n = false;
5096 /* If failed to a backwards jump that's part of a repetition
5097 loop, need to pop this failure point and use the next one. */
5098 switch ((re_opcode_t) *p)
5102 case maybe_pop_jump:
5103 case pop_failure_jump:
5106 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5109 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5111 && (re_opcode_t) *p1 == on_failure_jump))
5119 if (d >= string1 && d <= end1)
5123 break; /* Matching at this starting point really fails. */
5127 goto restore_best_regs;
5131 return -1; /* Failure to match. */
5134 /* Subroutine definitions for re_match_2. */
5137 /* We are passed P pointing to a register number after a start_memory.
5139 Return true if the pattern up to the corresponding stop_memory can
5140 match the empty string, and false otherwise.
5142 If we find the matching stop_memory, sets P to point to one past its number.
5143 Otherwise, sets P to an undefined byte less than or equal to END.
5145 We don't handle duplicates properly (yet). */
5148 group_match_null_string_p (p, end, reg_info)
5149 unsigned char **p, *end;
5150 register_info_type *reg_info;
5153 /* Point to after the args to the start_memory. */
5154 unsigned char *p1 = *p + 2;
5158 /* Skip over opcodes that can match nothing, and return true or
5159 false, as appropriate, when we get to one that can't, or to the
5160 matching stop_memory. */
5162 switch ((re_opcode_t) *p1)
5164 /* Could be either a loop or a series of alternatives. */
5165 case on_failure_jump:
5167 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5169 /* If the next operation is not a jump backwards in the
5174 /* Go through the on_failure_jumps of the alternatives,
5175 seeing if any of the alternatives cannot match nothing.
5176 The last alternative starts with only a jump,
5177 whereas the rest start with on_failure_jump and end
5178 with a jump, e.g., here is the pattern for `a|b|c':
5180 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5181 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5184 So, we have to first go through the first (n-1)
5185 alternatives and then deal with the last one separately. */
5188 /* Deal with the first (n-1) alternatives, which start
5189 with an on_failure_jump (see above) that jumps to right
5190 past a jump_past_alt. */
5192 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5194 /* `mcnt' holds how many bytes long the alternative
5195 is, including the ending `jump_past_alt' and
5198 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5202 /* Move to right after this alternative, including the
5206 /* Break if it's the beginning of an n-th alternative
5207 that doesn't begin with an on_failure_jump. */
5208 if ((re_opcode_t) *p1 != on_failure_jump)
5211 /* Still have to check that it's not an n-th
5212 alternative that starts with an on_failure_jump. */
5214 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5215 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5217 /* Get to the beginning of the n-th alternative. */
5223 /* Deal with the last alternative: go back and get number
5224 of the `jump_past_alt' just before it. `mcnt' contains
5225 the length of the alternative. */
5226 EXTRACT_NUMBER (mcnt, p1 - 2);
5228 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5231 p1 += mcnt; /* Get past the n-th alternative. */
5237 assert (p1[1] == **p);
5243 if (!common_op_match_null_string_p (&p1, end, reg_info))
5246 } /* while p1 < end */
5249 } /* group_match_null_string_p */
5252 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5253 It expects P to be the first byte of a single alternative and END one
5254 byte past the last. The alternative can contain groups. */
5257 alt_match_null_string_p (p, end, reg_info)
5258 unsigned char *p, *end;
5259 register_info_type *reg_info;
5262 unsigned char *p1 = p;
5266 /* Skip over opcodes that can match nothing, and break when we get
5267 to one that can't. */
5269 switch ((re_opcode_t) *p1)
5272 case on_failure_jump:
5274 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5279 if (!common_op_match_null_string_p (&p1, end, reg_info))
5282 } /* while p1 < end */
5285 } /* alt_match_null_string_p */
5288 /* Deals with the ops common to group_match_null_string_p and
5289 alt_match_null_string_p.
5291 Sets P to one after the op and its arguments, if any. */
5294 common_op_match_null_string_p (p, end, reg_info)
5295 unsigned char **p, *end;
5296 register_info_type *reg_info;
5301 unsigned char *p1 = *p;
5303 switch ((re_opcode_t) *p1++)
5323 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5324 ret = group_match_null_string_p (&p1, end, reg_info);
5326 /* Have to set this here in case we're checking a group which
5327 contains a group and a back reference to it. */
5329 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5330 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5336 /* If this is an optimized succeed_n for zero times, make the jump. */
5338 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5346 /* Get to the number of times to succeed. */
5348 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5353 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5361 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5369 /* All other opcodes mean we cannot match the empty string. */
5375 } /* common_op_match_null_string_p */
5378 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5379 bytes; nonzero otherwise. */
5382 bcmp_translate (s1, s2, len, translate)
5383 const char *s1, *s2;
5385 RE_TRANSLATE_TYPE translate;
5387 register const unsigned char *p1 = (const unsigned char *) s1;
5388 register const unsigned char *p2 = (const unsigned char *) s2;
5391 if (translate[*p1++] != translate[*p2++]) return 1;
5397 /* Entry points for GNU code. */
5399 /* re_compile_pattern is the GNU regular expression compiler: it
5400 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5401 Returns 0 if the pattern was valid, otherwise an error string.
5403 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5404 are set in BUFP on entry.
5406 We call regex_compile to do the actual compilation. */
5409 re_compile_pattern (pattern, length, bufp)
5410 const char *pattern;
5412 struct re_pattern_buffer *bufp;
5416 /* GNU code is written to assume at least RE_NREGS registers will be set
5417 (and at least one extra will be -1). */
5418 bufp->regs_allocated = REGS_UNALLOCATED;
5420 /* And GNU code determines whether or not to get register information
5421 by passing null for the REGS argument to re_match, etc., not by
5425 /* Match anchors at newline. */
5426 bufp->newline_anchor = 1;
5428 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5432 return gettext (re_error_msgid[(int) ret]);
5435 /* Entry points compatible with 4.2 BSD regex library. We don't define
5436 them unless specifically requested. */
5438 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5440 /* BSD has one and only one pattern buffer. */
5441 static struct re_pattern_buffer re_comp_buf;
5445 /* Make these definitions weak in libc, so POSIX programs can redefine
5446 these names if they don't use our functions, and still use
5447 regcomp/regexec below without link errors. */
5457 if (!re_comp_buf.buffer)
5458 return gettext ("No previous regular expression");
5462 if (!re_comp_buf.buffer)
5464 re_comp_buf.buffer = (unsigned char *) malloc (200);
5465 if (re_comp_buf.buffer == NULL)
5466 return gettext (re_error_msgid[(int) REG_ESPACE]);
5467 re_comp_buf.allocated = 200;
5469 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5470 if (re_comp_buf.fastmap == NULL)
5471 return gettext (re_error_msgid[(int) REG_ESPACE]);
5474 /* Since `re_exec' always passes NULL for the `regs' argument, we
5475 don't need to initialize the pattern buffer fields which affect it. */
5477 /* Match anchors at newlines. */
5478 re_comp_buf.newline_anchor = 1;
5480 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5485 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5486 return (char *) gettext (re_error_msgid[(int) ret]);
5497 const int len = strlen (s);
5499 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5502 #endif /* _REGEX_RE_COMP */
5504 /* POSIX.2 functions. Don't define these for Emacs. */
5508 /* regcomp takes a regular expression as a string and compiles it.
5510 PREG is a regex_t *. We do not expect any fields to be initialized,
5511 since POSIX says we shouldn't. Thus, we set
5513 `buffer' to the compiled pattern;
5514 `used' to the length of the compiled pattern;
5515 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5516 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5517 RE_SYNTAX_POSIX_BASIC;
5518 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5519 `fastmap' and `fastmap_accurate' to zero;
5520 `re_nsub' to the number of subexpressions in PATTERN.
5522 PATTERN is the address of the pattern string.
5524 CFLAGS is a series of bits which affect compilation.
5526 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5527 use POSIX basic syntax.
5529 If REG_NEWLINE is set, then . and [^...] don't match newline.
5530 Also, regexec will try a match beginning after every newline.
5532 If REG_ICASE is set, then we considers upper- and lowercase
5533 versions of letters to be equivalent when matching.
5535 If REG_NOSUB is set, then when PREG is passed to regexec, that
5536 routine will report only success or failure, and nothing about the
5539 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5540 the return codes and their meanings.) */
5546 regcomp (preg, pattern, cflags)
5548 const char *pattern;
5553 = (cflags & REG_EXTENDED) ?
5554 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5556 /* regex_compile will allocate the space for the compiled pattern. */
5558 preg->allocated = 0;
5561 /* Don't bother to use a fastmap when searching. This simplifies the
5562 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5563 characters after newlines into the fastmap. This way, we just try
5567 if (cflags & REG_ICASE)
5572 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5573 * sizeof (*(RE_TRANSLATE_TYPE)0));
5574 if (preg->translate == NULL)
5575 return (int) REG_ESPACE;
5577 /* Map uppercase characters to corresponding lowercase ones. */
5578 for (i = 0; i < CHAR_SET_SIZE; i++)
5579 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5582 preg->translate = NULL;
5584 /* If REG_NEWLINE is set, newlines are treated differently. */
5585 if (cflags & REG_NEWLINE)
5586 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5587 syntax &= ~RE_DOT_NEWLINE;
5588 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5589 /* It also changes the matching behavior. */
5590 preg->newline_anchor = 1;
5593 preg->newline_anchor = 0;
5595 preg->no_sub = !!(cflags & REG_NOSUB);
5597 /* POSIX says a null character in the pattern terminates it, so we
5598 can use strlen here in compiling the pattern. */
5599 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5601 /* POSIX doesn't distinguish between an unmatched open-group and an
5602 unmatched close-group: both are REG_EPAREN. */
5603 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5609 /* regexec searches for a given pattern, specified by PREG, in the
5612 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5613 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5614 least NMATCH elements, and we set them to the offsets of the
5615 corresponding matched substrings.
5617 EFLAGS specifies `execution flags' which affect matching: if
5618 REG_NOTBOL is set, then ^ does not match at the beginning of the
5619 string; if REG_NOTEOL is set, then $ does not match at the end.
5621 We return 0 if we find a match and REG_NOMATCH if not. */
5627 regexec (preg, string, nmatch, pmatch, eflags)
5628 const regex_t *preg;
5631 regmatch_t pmatch[];
5635 struct re_registers regs;
5636 regex_t private_preg;
5637 int len = strlen (string);
5638 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5640 private_preg = *preg;
5642 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5643 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5645 /* The user has told us exactly how many registers to return
5646 information about, via `nmatch'. We have to pass that on to the
5647 matching routines. */
5648 private_preg.regs_allocated = REGS_FIXED;
5652 regs.num_regs = nmatch;
5653 regs.start = TALLOC (nmatch, regoff_t);
5654 regs.end = TALLOC (nmatch, regoff_t);
5655 if (regs.start == NULL || regs.end == NULL)
5656 return (int) REG_NOMATCH;
5659 /* Perform the searching operation. */
5660 ret = re_search (&private_preg, string, len,
5661 /* start: */ 0, /* range: */ len,
5662 want_reg_info ? ®s : (struct re_registers *) 0);
5664 /* Copy the register information to the POSIX structure. */
5671 for (r = 0; r < nmatch; r++)
5673 pmatch[r].rm_so = regs.start[r];
5674 pmatch[r].rm_eo = regs.end[r];
5678 /* If we needed the temporary register info, free the space now. */
5683 /* We want zero return to mean success, unlike `re_search'. */
5684 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5688 /* Returns a message corresponding to an error code, ERRCODE, returned
5689 from either regcomp or regexec. We don't use PREG here. */
5692 regerror (errcode, preg, errbuf, errbuf_size)
5694 const regex_t *preg;
5702 || errcode >= (int) (sizeof (re_error_msgid)
5703 / sizeof (re_error_msgid[0])))
5704 /* Only error codes returned by the rest of the code should be passed
5705 to this routine. If we are given anything else, or if other regex
5706 code generates an invalid error code, then the program has a bug.
5707 Dump core so we can fix it. */
5710 msg = gettext (re_error_msgid[errcode]);
5712 msg_size = strlen (msg) + 1; /* Includes the null. */
5714 if (errbuf_size != 0)
5716 if (msg_size > errbuf_size)
5718 strncpy (errbuf, msg, errbuf_size - 1);
5719 errbuf[errbuf_size - 1] = 0;
5722 strcpy (errbuf, msg);
5729 /* Free dynamically allocated space used by PREG. */
5738 if (preg->buffer != NULL)
5739 free (preg->buffer);
5740 preg->buffer = NULL;
5742 preg->allocated = 0;
5745 if (preg->fastmap != NULL)
5746 free (preg->fastmap);
5747 preg->fastmap = NULL;
5748 preg->fastmap_accurate = 0;
5750 if (preg->translate != NULL)
5751 free (preg->translate);
5752 preg->translate = NULL;
5755 #endif /* not emacs */