summaryrefslogtreecommitdiff
path: root/gstudio/static/gstudio/js/d3.geo.js
diff options
context:
space:
mode:
Diffstat (limited to 'gstudio/static/gstudio/js/d3.geo.js')
-rw-r--r--gstudio/static/gstudio/js/d3.geo.js938
1 files changed, 938 insertions, 0 deletions
diff --git a/gstudio/static/gstudio/js/d3.geo.js b/gstudio/static/gstudio/js/d3.geo.js
new file mode 100644
index 00000000..2b402525
--- /dev/null
+++ b/gstudio/static/gstudio/js/d3.geo.js
@@ -0,0 +1,938 @@
+(function(){d3.geo = {};
+
+var d3_geo_radians = Math.PI / 180;
+// TODO clip input coordinates on opposite hemisphere
+d3.geo.azimuthal = function() {
+ var mode = "orthographic", // or stereographic, gnomonic, equidistant or equalarea
+ origin,
+ scale = 200,
+ translate = [480, 250],
+ x0,
+ y0,
+ cy0,
+ sy0;
+
+ function azimuthal(coordinates) {
+ var x1 = coordinates[0] * d3_geo_radians - x0,
+ y1 = coordinates[1] * d3_geo_radians,
+ cx1 = Math.cos(x1),
+ sx1 = Math.sin(x1),
+ cy1 = Math.cos(y1),
+ sy1 = Math.sin(y1),
+ cc = mode !== "orthographic" ? sy0 * sy1 + cy0 * cy1 * cx1 : null,
+ c,
+ k = mode === "stereographic" ? 1 / (1 + cc)
+ : mode === "gnomonic" ? 1 / cc
+ : mode === "equidistant" ? (c = Math.acos(cc), c ? c / Math.sin(c) : 0)
+ : mode === "equalarea" ? Math.sqrt(2 / (1 + cc))
+ : 1,
+ x = k * cy1 * sx1,
+ y = k * (sy0 * cy1 * cx1 - cy0 * sy1);
+ return [
+ scale * x + translate[0],
+ scale * y + translate[1]
+ ];
+ }
+
+ azimuthal.invert = function(coordinates) {
+ var x = (coordinates[0] - translate[0]) / scale,
+ y = (coordinates[1] - translate[1]) / scale,
+ p = Math.sqrt(x * x + y * y),
+ c = mode === "stereographic" ? 2 * Math.atan(p)
+ : mode === "gnomonic" ? Math.atan(p)
+ : mode === "equidistant" ? p
+ : mode === "equalarea" ? 2 * Math.asin(.5 * p)
+ : Math.asin(p),
+ sc = Math.sin(c),
+ cc = Math.cos(c);
+ return [
+ (x0 + Math.atan2(x * sc, p * cy0 * cc + y * sy0 * sc)) / d3_geo_radians,
+ Math.asin(cc * sy0 - (p ? (y * sc * cy0) / p : 0)) / d3_geo_radians
+ ];
+ };
+
+ azimuthal.mode = function(x) {
+ if (!arguments.length) return mode;
+ mode = x + "";
+ return azimuthal;
+ };
+
+ azimuthal.origin = function(x) {
+ if (!arguments.length) return origin;
+ origin = x;
+ x0 = origin[0] * d3_geo_radians;
+ y0 = origin[1] * d3_geo_radians;
+ cy0 = Math.cos(y0);
+ sy0 = Math.sin(y0);
+ return azimuthal;
+ };
+
+ azimuthal.scale = function(x) {
+ if (!arguments.length) return scale;
+ scale = +x;
+ return azimuthal;
+ };
+
+ azimuthal.translate = function(x) {
+ if (!arguments.length) return translate;
+ translate = [+x[0], +x[1]];
+ return azimuthal;
+ };
+
+ return azimuthal.origin([0, 0]);
+};
+// Derived from Tom Carden's Albers implementation for Protovis.
+// http://gist.github.com/476238
+// http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html
+
+d3.geo.albers = function() {
+ var origin = [-98, 38],
+ parallels = [29.5, 45.5],
+ scale = 1000,
+ translate = [480, 250],
+ lng0, // d3_geo_radians * origin[0]
+ n,
+ C,
+ p0;
+
+ function albers(coordinates) {
+ var t = n * (d3_geo_radians * coordinates[0] - lng0),
+ p = Math.sqrt(C - 2 * n * Math.sin(d3_geo_radians * coordinates[1])) / n;
+ return [
+ scale * p * Math.sin(t) + translate[0],
+ scale * (p * Math.cos(t) - p0) + translate[1]
+ ];
+ }
+
+ albers.invert = function(coordinates) {
+ var x = (coordinates[0] - translate[0]) / scale,
+ y = (coordinates[1] - translate[1]) / scale,
+ p0y = p0 + y,
+ t = Math.atan2(x, p0y),
+ p = Math.sqrt(x * x + p0y * p0y);
+ return [
+ (lng0 + t / n) / d3_geo_radians,
+ Math.asin((C - p * p * n * n) / (2 * n)) / d3_geo_radians
+ ];
+ };
+
+ function reload() {
+ var phi1 = d3_geo_radians * parallels[0],
+ phi2 = d3_geo_radians * parallels[1],
+ lat0 = d3_geo_radians * origin[1],
+ s = Math.sin(phi1),
+ c = Math.cos(phi1);
+ lng0 = d3_geo_radians * origin[0];
+ n = .5 * (s + Math.sin(phi2));
+ C = c * c + 2 * n * s;
+ p0 = Math.sqrt(C - 2 * n * Math.sin(lat0)) / n;
+ return albers;
+ }
+
+ albers.origin = function(x) {
+ if (!arguments.length) return origin;
+ origin = [+x[0], +x[1]];
+ return reload();
+ };
+
+ albers.parallels = function(x) {
+ if (!arguments.length) return parallels;
+ parallels = [+x[0], +x[1]];
+ return reload();
+ };
+
+ albers.scale = function(x) {
+ if (!arguments.length) return scale;
+ scale = +x;
+ return albers;
+ };
+
+ albers.translate = function(x) {
+ if (!arguments.length) return translate;
+ translate = [+x[0], +x[1]];
+ return albers;
+ };
+
+ return reload();
+};
+
+// A composite projection for the United States, 960x500. The set of standard
+// parallels for each region comes from USGS, which is published here:
+// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
+// TODO allow the composite projection to be rescaled?
+d3.geo.albersUsa = function() {
+ var lower48 = d3.geo.albers();
+
+ var alaska = d3.geo.albers()
+ .origin([-160, 60])
+ .parallels([55, 65]);
+
+ var hawaii = d3.geo.albers()
+ .origin([-160, 20])
+ .parallels([8, 18]);
+
+ var puertoRico = d3.geo.albers()
+ .origin([-60, 10])
+ .parallels([8, 18]);
+
+ function albersUsa(coordinates) {
+ var lon = coordinates[0],
+ lat = coordinates[1];
+ return (lat > 50 ? alaska
+ : lon < -140 ? hawaii
+ : lat < 21 ? puertoRico
+ : lower48)(coordinates);
+ }
+
+ albersUsa.scale = function(x) {
+ if (!arguments.length) return lower48.scale();
+ lower48.scale(x);
+ alaska.scale(x * .6);
+ hawaii.scale(x);
+ puertoRico.scale(x * 1.5);
+ return albersUsa.translate(lower48.translate());
+ };
+
+ albersUsa.translate = function(x) {
+ if (!arguments.length) return lower48.translate();
+ var dz = lower48.scale() / 1000,
+ dx = x[0],
+ dy = x[1];
+ lower48.translate(x);
+ alaska.translate([dx - 400 * dz, dy + 170 * dz]);
+ hawaii.translate([dx - 190 * dz, dy + 200 * dz]);
+ puertoRico.translate([dx + 580 * dz, dy + 430 * dz]);
+ return albersUsa;
+ };
+
+ return albersUsa.scale(lower48.scale());
+};
+d3.geo.bonne = function() {
+ var scale = 200,
+ translate = [480, 250],
+ x0, // origin longitude in radians
+ y0, // origin latitude in radians
+ y1, // parallel latitude in radians
+ c1; // cot(y1)
+
+ function bonne(coordinates) {
+ var x = coordinates[0] * d3_geo_radians - x0,
+ y = coordinates[1] * d3_geo_radians - y0;
+ if (y1) {
+ var p = c1 + y1 - y, E = x * Math.cos(y) / p;
+ x = p * Math.sin(E);
+ y = p * Math.cos(E) - c1;
+ } else {
+ x *= Math.cos(y);
+ y *= -1;
+ }
+ return [
+ scale * x + translate[0],
+ scale * y + translate[1]
+ ];
+ }
+
+ bonne.invert = function(coordinates) {
+ var x = (coordinates[0] - translate[0]) / scale,
+ y = (coordinates[1] - translate[1]) / scale;
+ if (y1) {
+ var c = c1 + y, p = Math.sqrt(x * x + c * c);
+ y = c1 + y1 - p;
+ x = x0 + p * Math.atan2(x, c) / Math.cos(y);
+ } else {
+ y *= -1;
+ x /= Math.cos(y);
+ }
+ return [
+ x / d3_geo_radians,
+ y / d3_geo_radians
+ ];
+ };
+
+ // 90° for Werner, 0° for Sinusoidal
+ bonne.parallel = function(x) {
+ if (!arguments.length) return y1 / d3_geo_radians;
+ c1 = 1 / Math.tan(y1 = x * d3_geo_radians);
+ return bonne;
+ };
+
+ bonne.origin = function(x) {
+ if (!arguments.length) return [x0 / d3_geo_radians, y0 / d3_geo_radians];
+ x0 = x[0] * d3_geo_radians;
+ y0 = x[1] * d3_geo_radians;
+ return bonne;
+ };
+
+ bonne.scale = function(x) {
+ if (!arguments.length) return scale;
+ scale = +x;
+ return bonne;
+ };
+
+ bonne.translate = function(x) {
+ if (!arguments.length) return translate;
+ translate = [+x[0], +x[1]];
+ return bonne;
+ };
+
+ return bonne.origin([0, 0]).parallel(45);
+};
+d3.geo.equirectangular = function() {
+ var scale = 500,
+ translate = [480, 250];
+
+ function equirectangular(coordinates) {
+ var x = coordinates[0] / 360,
+ y = -coordinates[1] / 360;
+ return [
+ scale * x + translate[0],
+ scale * y + translate[1]
+ ];
+ }
+
+ equirectangular.invert = function(coordinates) {
+ var x = (coordinates[0] - translate[0]) / scale,
+ y = (coordinates[1] - translate[1]) / scale;
+ return [
+ 360 * x,
+ -360 * y
+ ];
+ };
+
+ equirectangular.scale = function(x) {
+ if (!arguments.length) return scale;
+ scale = +x;
+ return equirectangular;
+ };
+
+ equirectangular.translate = function(x) {
+ if (!arguments.length) return translate;
+ translate = [+x[0], +x[1]];
+ return equirectangular;
+ };
+
+ return equirectangular;
+};
+d3.geo.mercator = function() {
+ var scale = 500,
+ translate = [480, 250];
+
+ function mercator(coordinates) {
+ var x = coordinates[0] / 360,
+ y = -(Math.log(Math.tan(Math.PI / 4 + coordinates[1] * d3_geo_radians / 2)) / d3_geo_radians) / 360;
+ return [
+ scale * x + translate[0],
+ scale * Math.max(-.5, Math.min(.5, y)) + translate[1]
+ ];
+ }
+
+ mercator.invert = function(coordinates) {
+ var x = (coordinates[0] - translate[0]) / scale,
+ y = (coordinates[1] - translate[1]) / scale;
+ return [
+ 360 * x,
+ 2 * Math.atan(Math.exp(-360 * y * d3_geo_radians)) / d3_geo_radians - 90
+ ];
+ };
+
+ mercator.scale = function(x) {
+ if (!arguments.length) return scale;
+ scale = +x;
+ return mercator;
+ };
+
+ mercator.translate = function(x) {
+ if (!arguments.length) return translate;
+ translate = [+x[0], +x[1]];
+ return mercator;
+ };
+
+ return mercator;
+};
+function d3_geo_type(types, defaultValue) {
+ return function(object) {
+ return object && object.type in types ? types[object.type](object) : defaultValue;
+ };
+}
+/**
+ * Returns a function that, given a GeoJSON object (e.g., a feature), returns
+ * the corresponding SVG path. The function can be customized by overriding the
+ * projection. Point features are mapped to circles with a default radius of
+ * 4.5px; the radius can be specified either as a constant or a function that
+ * is evaluated per object.
+ */
+d3.geo.path = function() {
+ var pointRadius = 4.5,
+ pointCircle = d3_path_circle(pointRadius),
+ projection = d3.geo.albersUsa();
+
+ function path(d, i) {
+ if (typeof pointRadius === "function") {
+ pointCircle = d3_path_circle(pointRadius.apply(this, arguments));
+ }
+ return pathType(d) || null;
+ }
+
+ function project(coordinates) {
+ return projection(coordinates).join(",");
+ }
+
+ var pathType = d3_geo_type({
+
+ FeatureCollection: function(o) {
+ var path = [],
+ features = o.features,
+ i = -1, // features.index
+ n = features.length;
+ while (++i < n) path.push(pathType(features[i].geometry));
+ return path.join("");
+ },
+
+ Feature: function(o) {
+ return pathType(o.geometry);
+ },
+
+ Point: function(o) {
+ return "M" + project(o.coordinates) + pointCircle;
+ },
+
+ MultiPoint: function(o) {
+ var path = [],
+ coordinates = o.coordinates,
+ i = -1, // coordinates.index
+ n = coordinates.length;
+ while (++i < n) path.push("M", project(coordinates[i]), pointCircle);
+ return path.join("");
+ },
+
+ LineString: function(o) {
+ var path = ["M"],
+ coordinates = o.coordinates,
+ i = -1, // coordinates.index
+ n = coordinates.length;
+ while (++i < n) path.push(project(coordinates[i]), "L");
+ path.pop();
+ return path.join("");
+ },
+
+ MultiLineString: function(o) {
+ var path = [],
+ coordinates = o.coordinates,
+ i = -1, // coordinates.index
+ n = coordinates.length,
+ subcoordinates, // coordinates[i]
+ j, // subcoordinates.index
+ m; // subcoordinates.length
+ while (++i < n) {
+ subcoordinates = coordinates[i];
+ j = -1;
+ m = subcoordinates.length;
+ path.push("M");
+ while (++j < m) path.push(project(subcoordinates[j]), "L");
+ path.pop();
+ }
+ return path.join("");
+ },
+
+ Polygon: function(o) {
+ var path = [],
+ coordinates = o.coordinates,
+ i = -1, // coordinates.index
+ n = coordinates.length,
+ subcoordinates, // coordinates[i]
+ j, // subcoordinates.index
+ m; // subcoordinates.length
+ while (++i < n) {
+ subcoordinates = coordinates[i];
+ j = -1;
+ if ((m = subcoordinates.length - 1) > 0) {
+ path.push("M");
+ while (++j < m) path.push(project(subcoordinates[j]), "L");
+ path[path.length - 1] = "Z";
+ }
+ }
+ return path.join("");
+ },
+
+ MultiPolygon: function(o) {
+ var path = [],
+ coordinates = o.coordinates,
+ i = -1, // coordinates index
+ n = coordinates.length,
+ subcoordinates, // coordinates[i]
+ j, // subcoordinates index
+ m, // subcoordinates.length
+ subsubcoordinates, // subcoordinates[j]
+ k, // subsubcoordinates index
+ p; // subsubcoordinates.length
+ while (++i < n) {
+ subcoordinates = coordinates[i];
+ j = -1;
+ m = subcoordinates.length;
+ while (++j < m) {
+ subsubcoordinates = subcoordinates[j];
+ k = -1;
+ if ((p = subsubcoordinates.length - 1) > 0) {
+ path.push("M");
+ while (++k < p) path.push(project(subsubcoordinates[k]), "L");
+ path[path.length - 1] = "Z";
+ }
+ }
+ }
+ return path.join("");
+ },
+
+ GeometryCollection: function(o) {
+ var path = [],
+ geometries = o.geometries,
+ i = -1, // geometries index
+ n = geometries.length;
+ while (++i < n) path.push(pathType(geometries[i]));
+ return path.join("");
+ }
+
+ });
+
+ var areaType = path.area = d3_geo_type({
+
+ FeatureCollection: function(o) {
+ var area = 0,
+ features = o.features,
+ i = -1, // features.index
+ n = features.length;
+ while (++i < n) area += areaType(features[i]);
+ return area;
+ },
+
+ Feature: function(o) {
+ return areaType(o.geometry);
+ },
+
+ Polygon: function(o) {
+ return polygonArea(o.coordinates);
+ },
+
+ MultiPolygon: function(o) {
+ var sum = 0,
+ coordinates = o.coordinates,
+ i = -1, // coordinates index
+ n = coordinates.length;
+ while (++i < n) sum += polygonArea(coordinates[i]);
+ return sum;
+ },
+
+ GeometryCollection: function(o) {
+ var sum = 0,
+ geometries = o.geometries,
+ i = -1, // geometries index
+ n = geometries.length;
+ while (++i < n) sum += areaType(geometries[i]);
+ return sum;
+ }
+
+ }, 0);
+
+ function polygonArea(coordinates) {
+ var sum = area(coordinates[0]), // exterior ring
+ i = 0, // coordinates.index
+ n = coordinates.length;
+ while (++i < n) sum -= area(coordinates[i]); // holes
+ return sum;
+ }
+
+ function polygonCentroid(coordinates) {
+ var polygon = d3.geom.polygon(coordinates[0].map(projection)), // exterior ring
+ area = polygon.area(),
+ centroid = polygon.centroid(area < 0 ? (area *= -1, 1) : -1),
+ x = centroid[0],
+ y = centroid[1],
+ z = area,
+ i = 0, // coordinates index
+ n = coordinates.length;
+ while (++i < n) {
+ polygon = d3.geom.polygon(coordinates[i].map(projection)); // holes
+ area = polygon.area();
+ centroid = polygon.centroid(area < 0 ? (area *= -1, 1) : -1);
+ x -= centroid[0];
+ y -= centroid[1];
+ z -= area;
+ }
+ return [x, y, 6 * z]; // weighted centroid
+ }
+
+ var centroidType = path.centroid = d3_geo_type({
+
+ // TODO FeatureCollection
+ // TODO Point
+ // TODO MultiPoint
+ // TODO LineString
+ // TODO MultiLineString
+ // TODO GeometryCollection
+
+ Feature: function(o) {
+ return centroidType(o.geometry);
+ },
+
+ Polygon: function(o) {
+ var centroid = polygonCentroid(o.coordinates);
+ return [centroid[0] / centroid[2], centroid[1] / centroid[2]];
+ },
+
+ MultiPolygon: function(o) {
+ var area = 0,
+ coordinates = o.coordinates,
+ centroid,
+ x = 0,
+ y = 0,
+ z = 0,
+ i = -1, // coordinates index
+ n = coordinates.length;
+ while (++i < n) {
+ centroid = polygonCentroid(coordinates[i]);
+ x += centroid[0];
+ y += centroid[1];
+ z += centroid[2];
+ }
+ return [x / z, y / z];
+ }
+
+ });
+
+ function area(coordinates) {
+ return Math.abs(d3.geom.polygon(coordinates.map(projection)).area());
+ }
+
+ path.projection = function(x) {
+ projection = x;
+ return path;
+ };
+
+ path.pointRadius = function(x) {
+ if (typeof x === "function") pointRadius = x;
+ else {
+ pointRadius = +x;
+ pointCircle = d3_path_circle(pointRadius);
+ }
+ return path;
+ };
+
+ return path;
+};
+
+function d3_path_circle(radius) {
+ return "m0," + radius
+ + "a" + radius + "," + radius + " 0 1,1 0," + (-2 * radius)
+ + "a" + radius + "," + radius + " 0 1,1 0," + (+2 * radius)
+ + "z";
+}
+/**
+ * Given a GeoJSON object, returns the corresponding bounding box. The bounding
+ * box is represented by a two-dimensional array: [[left, bottom], [right,
+ * top]], where left is the minimum longitude, bottom is the minimum latitude,
+ * right is maximum longitude, and top is the maximum latitude.
+ */
+d3.geo.bounds = function(feature) {
+ var left = Infinity,
+ bottom = Infinity,
+ right = -Infinity,
+ top = -Infinity;
+ d3_geo_bounds(feature, function(x, y) {
+ if (x < left) left = x;
+ if (x > right) right = x;
+ if (y < bottom) bottom = y;
+ if (y > top) top = y;
+ });
+ return [[left, bottom], [right, top]];
+};
+
+function d3_geo_bounds(o, f) {
+ if (o.type in d3_geo_boundsTypes) d3_geo_boundsTypes[o.type](o, f);
+}
+
+var d3_geo_boundsTypes = {
+ Feature: d3_geo_boundsFeature,
+ FeatureCollection: d3_geo_boundsFeatureCollection,
+ GeometryCollection: d3_geo_boundsGeometryCollection,
+ LineString: d3_geo_boundsLineString,
+ MultiLineString: d3_geo_boundsMultiLineString,
+ MultiPoint: d3_geo_boundsLineString,
+ MultiPolygon: d3_geo_boundsMultiPolygon,
+ Point: d3_geo_boundsPoint,
+ Polygon: d3_geo_boundsPolygon
+};
+
+function d3_geo_boundsFeature(o, f) {
+ d3_geo_bounds(o.geometry, f);
+}
+
+function d3_geo_boundsFeatureCollection(o, f) {
+ for (var a = o.features, i = 0, n = a.length; i < n; i++) {
+ d3_geo_bounds(a[i].geometry, f);
+ }
+}
+
+function d3_geo_boundsGeometryCollection(o, f) {
+ for (var a = o.geometries, i = 0, n = a.length; i < n; i++) {
+ d3_geo_bounds(a[i], f);
+ }
+}
+
+function d3_geo_boundsLineString(o, f) {
+ for (var a = o.coordinates, i = 0, n = a.length; i < n; i++) {
+ f.apply(null, a[i]);
+ }
+}
+
+function d3_geo_boundsMultiLineString(o, f) {
+ for (var a = o.coordinates, i = 0, n = a.length; i < n; i++) {
+ for (var b = a[i], j = 0, m = b.length; j < m; j++) {
+ f.apply(null, b[j]);
+ }
+ }
+}
+
+function d3_geo_boundsMultiPolygon(o, f) {
+ for (var a = o.coordinates, i = 0, n = a.length; i < n; i++) {
+ for (var b = a[i][0], j = 0, m = b.length; j < m; j++) {
+ f.apply(null, b[j]);
+ }
+ }
+}
+
+function d3_geo_boundsPoint(o, f) {
+ f.apply(null, o.coordinates);
+}
+
+function d3_geo_boundsPolygon(o, f) {
+ for (var a = o.coordinates[0], i = 0, n = a.length; i < n; i++) {
+ f.apply(null, a[i]);
+ }
+}
+// TODO breakAtDateLine?
+
+d3.geo.circle = function() {
+ var origin = [0, 0],
+ degrees = 90 - 1e-2,
+ radians = degrees * d3_geo_radians,
+ arc = d3.geo.greatArc().target(Object);
+
+ function circle() {
+ // TODO render a circle as a Polygon
+ }
+
+ function visible(point) {
+ return arc.distance(point) < radians;
+ }
+
+ circle.clip = function(d) {
+ arc.source(typeof origin === "function" ? origin.apply(this, arguments) : origin);
+ return clipType(d);
+ };
+
+ var clipType = d3_geo_type({
+
+ FeatureCollection: function(o) {
+ var features = o.features.map(clipType).filter(Object);
+ return features && (o = Object.create(o), o.features = features, o);
+ },
+
+ Feature: function(o) {
+ var geometry = clipType(o.geometry);
+ return geometry && (o = Object.create(o), o.geometry = geometry, o);
+ },
+
+ Point: function(o) {
+ return visible(o.coordinates) && o;
+ },
+
+ MultiPoint: function(o) {
+ var coordinates = o.coordinates.filter(visible);
+ return coordinates.length && {
+ type: o.type,
+ coordinates: coordinates
+ };
+ },
+
+ LineString: function(o) {
+ var coordinates = clip(o.coordinates);
+ return coordinates.length && (o = Object.create(o), o.coordinates = coordinates, o);
+ },
+
+ MultiLineString: function(o) {
+ var coordinates = o.coordinates.map(clip).filter(function(d) { return d.length; });
+ return coordinates.length && (o = Object.create(o), o.coordinates = coordinates, o);
+ },
+
+ Polygon: function(o) {
+ var coordinates = o.coordinates.map(clip);
+ return coordinates[0].length && (o = Object.create(o), o.coordinates = coordinates, o);
+ },
+
+ MultiPolygon: function(o) {
+ var coordinates = o.coordinates.map(function(d) { return d.map(clip); }).filter(function(d) { return d[0].length; });
+ return coordinates.length && (o = Object.create(o), o.coordinates = coordinates, o);
+ },
+
+ GeometryCollection: function(o) {
+ var geometries = o.geometries.map(clipType).filter(Object);
+ return geometries.length && (o = Object.create(o), o.geometries = geometries, o);
+ }
+
+ });
+
+ function clip(coordinates) {
+ var i = -1,
+ n = coordinates.length,
+ clipped = [],
+ p0,
+ p1,
+ p2,
+ d0,
+ d1;
+
+ while (++i < n) {
+ d1 = arc.distance(p2 = coordinates[i]);
+ if (d1 < radians) {
+ if (p1) clipped.push(d3_geo_greatArcInterpolate(p1, p2)((d0 - radians) / (d0 - d1)));
+ clipped.push(p2);
+ p0 = p1 = null;
+ } else {
+ p1 = p2;
+ if (!p0 && clipped.length) {
+ clipped.push(d3_geo_greatArcInterpolate(clipped[clipped.length - 1], p1)((radians - d0) / (d1 - d0)));
+ p0 = p1;
+ }
+ }
+ d0 = d1;
+ }
+
+ if (p1 && clipped.length) {
+ d1 = arc.distance(p2 = clipped[0]);
+ clipped.push(d3_geo_greatArcInterpolate(p1, p2)((d0 - radians) / (d0 - d1)));
+ }
+
+ return resample(clipped);
+ }
+
+ // Resample coordinates, creating great arcs between each.
+ function resample(coordinates) {
+ var i = 0,
+ n = coordinates.length,
+ j,
+ m,
+ resampled = n ? [coordinates[0]] : coordinates,
+ resamples,
+ origin = arc.source();
+
+ while (++i < n) {
+ resamples = arc.source(coordinates[i - 1])(coordinates[i]).coordinates;
+ for (j = 0, m = resamples.length; ++j < m;) resampled.push(resamples[j]);
+ }
+
+ arc.source(origin);
+ return resampled;
+ }
+
+ circle.origin = function(x) {
+ if (!arguments.length) return origin;
+ origin = x;
+ return circle;
+ };
+
+ circle.angle = function(x) {
+ if (!arguments.length) return degrees;
+ radians = (degrees = +x) * d3_geo_radians;
+ return circle;
+ };
+
+ // Precision is specified in degrees.
+ circle.precision = function(x) {
+ if (!arguments.length) return arc.precision();
+ arc.precision(x);
+ return circle;
+ };
+
+ return circle;
+}
+d3.geo.greatArc = function() {
+ var source = d3_geo_greatArcSource,
+ target = d3_geo_greatArcTarget,
+ precision = 6 * d3_geo_radians;
+
+ function greatArc() {
+ var a = typeof source === "function" ? source.apply(this, arguments) : source,
+ b = typeof target === "function" ? target.apply(this, arguments) : target,
+ i = d3_geo_greatArcInterpolate(a, b),
+ dt = precision / i.d,
+ t = 0,
+ coordinates = [a];
+ while ((t += dt) < 1) coordinates.push(i(t));
+ coordinates.push(b);
+ return {
+ type: "LineString",
+ coordinates: coordinates
+ };
+ }
+
+ // Length returned in radians; multiply by radius for distance.
+ greatArc.distance = function() {
+ var a = typeof source === "function" ? source.apply(this, arguments) : source,
+ b = typeof target === "function" ? target.apply(this, arguments) : target;
+ return d3_geo_greatArcInterpolate(a, b).d;
+ };
+
+ greatArc.source = function(x) {
+ if (!arguments.length) return source;
+ source = x;
+ return greatArc;
+ };
+
+ greatArc.target = function(x) {
+ if (!arguments.length) return target;
+ target = x;
+ return greatArc;
+ };
+
+ // Precision is specified in degrees.
+ greatArc.precision = function(x) {
+ if (!arguments.length) return precision / d3_geo_radians;
+ precision = x * d3_geo_radians;
+ return greatArc;
+ };
+
+ return greatArc;
+};
+
+function d3_geo_greatArcSource(d) {
+ return d.source;
+}
+
+function d3_geo_greatArcTarget(d) {
+ return d.target;
+}
+
+function d3_geo_greatArcInterpolate(a, b) {
+ var x0 = a[0] * d3_geo_radians, cx0 = Math.cos(x0), sx0 = Math.sin(x0),
+ y0 = a[1] * d3_geo_radians, cy0 = Math.cos(y0), sy0 = Math.sin(y0),
+ x1 = b[0] * d3_geo_radians, cx1 = Math.cos(x1), sx1 = Math.sin(x1),
+ y1 = b[1] * d3_geo_radians, cy1 = Math.cos(y1), sy1 = Math.sin(y1),
+ d = interpolate.d = Math.acos(Math.max(-1, Math.min(1, sy0 * sy1 + cy0 * cy1 * Math.cos(x1 - x0)))),
+ sd = Math.sin(d);
+
+ // From http://williams.best.vwh.net/avform.htm#Intermediate
+ function interpolate(t) {
+ var A = Math.sin(d - (t *= d)) / sd,
+ B = Math.sin(t) / sd,
+ x = A * cy0 * cx0 + B * cy1 * cx1,
+ y = A * cy0 * sx0 + B * cy1 * sx1,
+ z = A * sy0 + B * sy1;
+ return [
+ Math.atan2(y, x) / d3_geo_radians,
+ Math.atan2(z, Math.sqrt(x * x + y * y)) / d3_geo_radians
+ ];
+ }
+
+ return interpolate;
+}
+d3.geo.greatCircle = d3.geo.circle;
+})();