]> git.infradead.org Git - nvme.git/blob - arch/loongarch/kernel/smp.c
Merge tag 'lsm-pr-20240131' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
[nvme.git] / arch / loongarch / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/profile.h>
17 #include <linux/seq_file.h>
18 #include <linux/smp.h>
19 #include <linux/threads.h>
20 #include <linux/export.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/time.h>
23 #include <linux/tracepoint.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task_stack.h>
26
27 #include <asm/cpu.h>
28 #include <asm/idle.h>
29 #include <asm/loongson.h>
30 #include <asm/mmu_context.h>
31 #include <asm/numa.h>
32 #include <asm/processor.h>
33 #include <asm/setup.h>
34 #include <asm/time.h>
35
36 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
37 EXPORT_SYMBOL(__cpu_number_map);
38
39 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
40 EXPORT_SYMBOL(__cpu_logical_map);
41
42 /* Representing the threads (siblings) of each logical CPU */
43 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
44 EXPORT_SYMBOL(cpu_sibling_map);
45
46 /* Representing the core map of multi-core chips of each logical CPU */
47 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
48 EXPORT_SYMBOL(cpu_core_map);
49
50 static DECLARE_COMPLETION(cpu_starting);
51 static DECLARE_COMPLETION(cpu_running);
52
53 /*
54  * A logcal cpu mask containing only one VPE per core to
55  * reduce the number of IPIs on large MT systems.
56  */
57 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_foreign_map);
59
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62
63 /* representing cpus for which core maps can be computed */
64 static cpumask_t cpu_core_setup_map;
65
66 struct secondary_data cpuboot_data;
67 static DEFINE_PER_CPU(int, cpu_state);
68
69 enum ipi_msg_type {
70         IPI_RESCHEDULE,
71         IPI_CALL_FUNCTION,
72 };
73
74 static const char *ipi_types[NR_IPI] __tracepoint_string = {
75         [IPI_RESCHEDULE] = "Rescheduling interrupts",
76         [IPI_CALL_FUNCTION] = "Function call interrupts",
77 };
78
79 void show_ipi_list(struct seq_file *p, int prec)
80 {
81         unsigned int cpu, i;
82
83         for (i = 0; i < NR_IPI; i++) {
84                 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
85                 for_each_online_cpu(cpu)
86                         seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
87                 seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
88         }
89 }
90
91 /* Send mailbox buffer via Mail_Send */
92 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
93 {
94         uint64_t val;
95
96         /* Send high 32 bits */
97         val = IOCSR_MBUF_SEND_BLOCKING;
98         val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
99         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
100         val |= (data & IOCSR_MBUF_SEND_H32_MASK);
101         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
102
103         /* Send low 32 bits */
104         val = IOCSR_MBUF_SEND_BLOCKING;
105         val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
106         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
107         val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
108         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
109 };
110
111 static u32 ipi_read_clear(int cpu)
112 {
113         u32 action;
114
115         /* Load the ipi register to figure out what we're supposed to do */
116         action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
117         /* Clear the ipi register to clear the interrupt */
118         iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
119         wbflush();
120
121         return action;
122 }
123
124 static void ipi_write_action(int cpu, u32 action)
125 {
126         unsigned int irq = 0;
127
128         while ((irq = ffs(action))) {
129                 uint32_t val = IOCSR_IPI_SEND_BLOCKING;
130
131                 val |= (irq - 1);
132                 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
133                 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
134                 action &= ~BIT(irq - 1);
135         }
136 }
137
138 void loongson_send_ipi_single(int cpu, unsigned int action)
139 {
140         ipi_write_action(cpu_logical_map(cpu), (u32)action);
141 }
142
143 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
144 {
145         unsigned int i;
146
147         for_each_cpu(i, mask)
148                 ipi_write_action(cpu_logical_map(i), (u32)action);
149 }
150
151 /*
152  * This function sends a 'reschedule' IPI to another CPU.
153  * it goes straight through and wastes no time serializing
154  * anything. Worst case is that we lose a reschedule ...
155  */
156 void arch_smp_send_reschedule(int cpu)
157 {
158         loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
159 }
160 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
161
162 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
163 {
164         unsigned int action;
165         unsigned int cpu = smp_processor_id();
166
167         action = ipi_read_clear(cpu_logical_map(cpu));
168
169         if (action & SMP_RESCHEDULE) {
170                 scheduler_ipi();
171                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
172         }
173
174         if (action & SMP_CALL_FUNCTION) {
175                 generic_smp_call_function_interrupt();
176                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
177         }
178
179         return IRQ_HANDLED;
180 }
181
182 static void __init fdt_smp_setup(void)
183 {
184 #ifdef CONFIG_OF
185         unsigned int cpu, cpuid;
186         struct device_node *node = NULL;
187
188         for_each_of_cpu_node(node) {
189                 if (!of_device_is_available(node))
190                         continue;
191
192                 cpuid = of_get_cpu_hwid(node, 0);
193                 if (cpuid >= nr_cpu_ids)
194                         continue;
195
196                 if (cpuid == loongson_sysconf.boot_cpu_id) {
197                         cpu = 0;
198                         numa_add_cpu(cpu);
199                 } else {
200                         cpu = cpumask_next_zero(-1, cpu_present_mask);
201                 }
202
203                 num_processors++;
204                 set_cpu_possible(cpu, true);
205                 set_cpu_present(cpu, true);
206                 __cpu_number_map[cpuid] = cpu;
207                 __cpu_logical_map[cpu] = cpuid;
208         }
209
210         loongson_sysconf.nr_cpus = num_processors;
211         set_bit(0, loongson_sysconf.cores_io_master);
212 #endif
213 }
214
215 void __init loongson_smp_setup(void)
216 {
217         fdt_smp_setup();
218
219         if (loongson_sysconf.cores_per_package == 0)
220                 loongson_sysconf.cores_per_package = num_processors;
221
222         cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
223         cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
224
225         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
226         pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
227 }
228
229 void __init loongson_prepare_cpus(unsigned int max_cpus)
230 {
231         int i = 0;
232
233         parse_acpi_topology();
234
235         for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
236                 set_cpu_present(i, true);
237                 csr_mail_send(0, __cpu_logical_map[i], 0);
238                 cpu_data[i].global_id = __cpu_logical_map[i];
239         }
240
241         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
242 }
243
244 /*
245  * Setup the PC, SP, and TP of a secondary processor and start it running!
246  */
247 void loongson_boot_secondary(int cpu, struct task_struct *idle)
248 {
249         unsigned long entry;
250
251         pr_info("Booting CPU#%d...\n", cpu);
252
253         entry = __pa_symbol((unsigned long)&smpboot_entry);
254         cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
255         cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
256
257         csr_mail_send(entry, cpu_logical_map(cpu), 0);
258
259         loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
260 }
261
262 /*
263  * SMP init and finish on secondary CPUs
264  */
265 void loongson_init_secondary(void)
266 {
267         unsigned int cpu = smp_processor_id();
268         unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
269                              ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
270
271         change_csr_ecfg(ECFG0_IM, imask);
272
273         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
274
275 #ifdef CONFIG_NUMA
276         numa_add_cpu(cpu);
277 #endif
278         per_cpu(cpu_state, cpu) = CPU_ONLINE;
279         cpu_data[cpu].package =
280                      cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
281         cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
282                      cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
283 }
284
285 void loongson_smp_finish(void)
286 {
287         local_irq_enable();
288         iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
289         pr_info("CPU#%d finished\n", smp_processor_id());
290 }
291
292 #ifdef CONFIG_HOTPLUG_CPU
293
294 int loongson_cpu_disable(void)
295 {
296         unsigned long flags;
297         unsigned int cpu = smp_processor_id();
298
299         if (io_master(cpu))
300                 return -EBUSY;
301
302 #ifdef CONFIG_NUMA
303         numa_remove_cpu(cpu);
304 #endif
305         set_cpu_online(cpu, false);
306         calculate_cpu_foreign_map();
307         local_irq_save(flags);
308         irq_migrate_all_off_this_cpu();
309         clear_csr_ecfg(ECFG0_IM);
310         local_irq_restore(flags);
311         local_flush_tlb_all();
312
313         return 0;
314 }
315
316 void loongson_cpu_die(unsigned int cpu)
317 {
318         while (per_cpu(cpu_state, cpu) != CPU_DEAD)
319                 cpu_relax();
320
321         mb();
322 }
323
324 void __noreturn arch_cpu_idle_dead(void)
325 {
326         register uint64_t addr;
327         register void (*init_fn)(void);
328
329         idle_task_exit();
330         local_irq_enable();
331         set_csr_ecfg(ECFGF_IPI);
332         __this_cpu_write(cpu_state, CPU_DEAD);
333
334         __smp_mb();
335         do {
336                 __asm__ __volatile__("idle 0\n\t");
337                 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
338         } while (addr == 0);
339
340         init_fn = (void *)TO_CACHE(addr);
341         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
342
343         init_fn();
344         BUG();
345 }
346
347 #endif
348
349 /*
350  * Power management
351  */
352 #ifdef CONFIG_PM
353
354 static int loongson_ipi_suspend(void)
355 {
356         return 0;
357 }
358
359 static void loongson_ipi_resume(void)
360 {
361         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
362 }
363
364 static struct syscore_ops loongson_ipi_syscore_ops = {
365         .resume         = loongson_ipi_resume,
366         .suspend        = loongson_ipi_suspend,
367 };
368
369 /*
370  * Enable boot cpu ipi before enabling nonboot cpus
371  * during syscore_resume.
372  */
373 static int __init ipi_pm_init(void)
374 {
375         register_syscore_ops(&loongson_ipi_syscore_ops);
376         return 0;
377 }
378
379 core_initcall(ipi_pm_init);
380 #endif
381
382 static inline void set_cpu_sibling_map(int cpu)
383 {
384         int i;
385
386         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
387
388         for_each_cpu(i, &cpu_sibling_setup_map) {
389                 if (cpus_are_siblings(cpu, i)) {
390                         cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
391                         cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
392                 }
393         }
394 }
395
396 static inline void set_cpu_core_map(int cpu)
397 {
398         int i;
399
400         cpumask_set_cpu(cpu, &cpu_core_setup_map);
401
402         for_each_cpu(i, &cpu_core_setup_map) {
403                 if (cpu_data[cpu].package == cpu_data[i].package) {
404                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
405                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
406                 }
407         }
408 }
409
410 /*
411  * Calculate a new cpu_foreign_map mask whenever a
412  * new cpu appears or disappears.
413  */
414 void calculate_cpu_foreign_map(void)
415 {
416         int i, k, core_present;
417         cpumask_t temp_foreign_map;
418
419         /* Re-calculate the mask */
420         cpumask_clear(&temp_foreign_map);
421         for_each_online_cpu(i) {
422                 core_present = 0;
423                 for_each_cpu(k, &temp_foreign_map)
424                         if (cpus_are_siblings(i, k))
425                                 core_present = 1;
426                 if (!core_present)
427                         cpumask_set_cpu(i, &temp_foreign_map);
428         }
429
430         for_each_online_cpu(i)
431                 cpumask_andnot(&cpu_foreign_map[i],
432                                &temp_foreign_map, &cpu_sibling_map[i]);
433 }
434
435 /* Preload SMP state for boot cpu */
436 void smp_prepare_boot_cpu(void)
437 {
438         unsigned int cpu, node, rr_node;
439
440         set_cpu_possible(0, true);
441         set_cpu_online(0, true);
442         set_my_cpu_offset(per_cpu_offset(0));
443
444         rr_node = first_node(node_online_map);
445         for_each_possible_cpu(cpu) {
446                 node = early_cpu_to_node(cpu);
447
448                 /*
449                  * The mapping between present cpus and nodes has been
450                  * built during MADT and SRAT parsing.
451                  *
452                  * If possible cpus = present cpus here, early_cpu_to_node
453                  * will return valid node.
454                  *
455                  * If possible cpus > present cpus here (e.g. some possible
456                  * cpus will be added by cpu-hotplug later), for possible but
457                  * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
458                  * and we just map them to online nodes in round-robin way.
459                  * Once hotplugged, new correct mapping will be built for them.
460                  */
461                 if (node != NUMA_NO_NODE)
462                         set_cpu_numa_node(cpu, node);
463                 else {
464                         set_cpu_numa_node(cpu, rr_node);
465                         rr_node = next_node_in(rr_node, node_online_map);
466                 }
467         }
468 }
469
470 /* called from main before smp_init() */
471 void __init smp_prepare_cpus(unsigned int max_cpus)
472 {
473         init_new_context(current, &init_mm);
474         current_thread_info()->cpu = 0;
475         loongson_prepare_cpus(max_cpus);
476         set_cpu_sibling_map(0);
477         set_cpu_core_map(0);
478         calculate_cpu_foreign_map();
479 #ifndef CONFIG_HOTPLUG_CPU
480         init_cpu_present(cpu_possible_mask);
481 #endif
482 }
483
484 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
485 {
486         loongson_boot_secondary(cpu, tidle);
487
488         /* Wait for CPU to start and be ready to sync counters */
489         if (!wait_for_completion_timeout(&cpu_starting,
490                                          msecs_to_jiffies(5000))) {
491                 pr_crit("CPU%u: failed to start\n", cpu);
492                 return -EIO;
493         }
494
495         /* Wait for CPU to finish startup & mark itself online before return */
496         wait_for_completion(&cpu_running);
497
498         return 0;
499 }
500
501 /*
502  * First C code run on the secondary CPUs after being started up by
503  * the master.
504  */
505 asmlinkage void start_secondary(void)
506 {
507         unsigned int cpu;
508
509         sync_counter();
510         cpu = raw_smp_processor_id();
511         set_my_cpu_offset(per_cpu_offset(cpu));
512
513         cpu_probe();
514         constant_clockevent_init();
515         loongson_init_secondary();
516
517         set_cpu_sibling_map(cpu);
518         set_cpu_core_map(cpu);
519
520         notify_cpu_starting(cpu);
521
522         /* Notify boot CPU that we're starting */
523         complete(&cpu_starting);
524
525         /* The CPU is running, now mark it online */
526         set_cpu_online(cpu, true);
527
528         calculate_cpu_foreign_map();
529
530         /*
531          * Notify boot CPU that we're up & online and it can safely return
532          * from __cpu_up()
533          */
534         complete(&cpu_running);
535
536         /*
537          * irq will be enabled in loongson_smp_finish(), enabling it too
538          * early is dangerous.
539          */
540         WARN_ON_ONCE(!irqs_disabled());
541         loongson_smp_finish();
542
543         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
544 }
545
546 void __init smp_cpus_done(unsigned int max_cpus)
547 {
548 }
549
550 static void stop_this_cpu(void *dummy)
551 {
552         set_cpu_online(smp_processor_id(), false);
553         calculate_cpu_foreign_map();
554         local_irq_disable();
555         while (true);
556 }
557
558 void smp_send_stop(void)
559 {
560         smp_call_function(stop_this_cpu, NULL, 0);
561 }
562
563 #ifdef CONFIG_PROFILING
564 int setup_profiling_timer(unsigned int multiplier)
565 {
566         return 0;
567 }
568 #endif
569
570 static void flush_tlb_all_ipi(void *info)
571 {
572         local_flush_tlb_all();
573 }
574
575 void flush_tlb_all(void)
576 {
577         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
578 }
579
580 static void flush_tlb_mm_ipi(void *mm)
581 {
582         local_flush_tlb_mm((struct mm_struct *)mm);
583 }
584
585 void flush_tlb_mm(struct mm_struct *mm)
586 {
587         if (atomic_read(&mm->mm_users) == 0)
588                 return;         /* happens as a result of exit_mmap() */
589
590         preempt_disable();
591
592         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
593                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
594         } else {
595                 unsigned int cpu;
596
597                 for_each_online_cpu(cpu) {
598                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
599                                 cpu_context(cpu, mm) = 0;
600                 }
601                 local_flush_tlb_mm(mm);
602         }
603
604         preempt_enable();
605 }
606
607 struct flush_tlb_data {
608         struct vm_area_struct *vma;
609         unsigned long addr1;
610         unsigned long addr2;
611 };
612
613 static void flush_tlb_range_ipi(void *info)
614 {
615         struct flush_tlb_data *fd = info;
616
617         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
618 }
619
620 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
621 {
622         struct mm_struct *mm = vma->vm_mm;
623
624         preempt_disable();
625         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
626                 struct flush_tlb_data fd = {
627                         .vma = vma,
628                         .addr1 = start,
629                         .addr2 = end,
630                 };
631
632                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
633         } else {
634                 unsigned int cpu;
635
636                 for_each_online_cpu(cpu) {
637                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
638                                 cpu_context(cpu, mm) = 0;
639                 }
640                 local_flush_tlb_range(vma, start, end);
641         }
642         preempt_enable();
643 }
644
645 static void flush_tlb_kernel_range_ipi(void *info)
646 {
647         struct flush_tlb_data *fd = info;
648
649         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
650 }
651
652 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
653 {
654         struct flush_tlb_data fd = {
655                 .addr1 = start,
656                 .addr2 = end,
657         };
658
659         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
660 }
661
662 static void flush_tlb_page_ipi(void *info)
663 {
664         struct flush_tlb_data *fd = info;
665
666         local_flush_tlb_page(fd->vma, fd->addr1);
667 }
668
669 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
670 {
671         preempt_disable();
672         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
673                 struct flush_tlb_data fd = {
674                         .vma = vma,
675                         .addr1 = page,
676                 };
677
678                 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
679         } else {
680                 unsigned int cpu;
681
682                 for_each_online_cpu(cpu) {
683                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
684                                 cpu_context(cpu, vma->vm_mm) = 0;
685                 }
686                 local_flush_tlb_page(vma, page);
687         }
688         preempt_enable();
689 }
690 EXPORT_SYMBOL(flush_tlb_page);
691
692 static void flush_tlb_one_ipi(void *info)
693 {
694         unsigned long vaddr = (unsigned long) info;
695
696         local_flush_tlb_one(vaddr);
697 }
698
699 void flush_tlb_one(unsigned long vaddr)
700 {
701         on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
702 }
703 EXPORT_SYMBOL(flush_tlb_one);